Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota Medical School, Minneapolis, MN 55455, USA.
Endocr Rev. 2024 Sep 12;45(5):755-771. doi: 10.1210/endrev/bnae015.
Receptor guanylyl cyclases (GCs) are single membrane spanning, multidomain enzymes, that synthesize cGMP in response to natriuretic peptides or other ligands. They are evolutionarily conserved from sea urchins to humans and regulate diverse physiologies. Most family members are phosphorylated on 4 to 7 conserved serines or threonines at the beginning of their kinase homology domains. This review describes studies that demonstrate that phosphorylation and dephosphorylation are required for activation and inactivation of these enzymes, respectively. Phosphorylation sites in GC-A, GC-B, GC-E, and sea urchin receptors are discussed, as are mutant receptors that mimic the dephosphorylated inactive or phosphorylated active forms of GC-A and GC-B, respectively. A salt bridge model is described that explains why phosphorylation is required for enzyme activation. Potential kinases, phosphatases, and ATP regulation of GC receptors are also discussed. Critically, knock-in mice with glutamate substitutions for receptor phosphorylation sites are described. The inability of opposing signaling pathways to inhibit cGMP synthesis in mice where GC-A or GC-B cannot be dephosphorylated demonstrates the necessity of receptor dephosphorylation in vivo. Cardiac hypertrophy, oocyte meiosis, long-bone growth/achondroplasia, and bone density are regulated by GC phosphorylation, but additional processes are likely to be identified in the future.
受体鸟苷酸环化酶(GCs)是一种单一跨膜、多结构域的酶,可在响应利钠肽或其他配体时合成 cGMP。它们从海胆到人在进化上是保守的,可调节多种生理机能。大多数家族成员在其激酶同源结构域的开始处有 4 到 7 个保守的丝氨酸或苏氨酸被磷酸化。这篇综述描述了证明这些酶的激活和失活分别需要磷酸化和去磷酸化的研究。讨论了 GC-A、GC-B、GC-E 和海胆受体中的磷酸化位点,以及分别模拟 GC-A 和 GC-B 的去磷酸化无活性或磷酸化活性形式的突变受体。描述了一个盐桥模型,该模型解释了为什么磷酸化是酶激活所必需的。还讨论了潜在的激酶、磷酸酶和 GC 受体的 ATP 调节。至关重要的是,描述了具有谷氨酸取代受体磷酸化位点的敲入小鼠。在不能去磷酸化 GC-A 或 GC-B 的小鼠中,相反的信号通路不能抑制 cGMP 合成,这证明了受体在体内去磷酸化的必要性。GC 磷酸化调节心脏肥大、卵母细胞减数分裂、长骨生长/软骨发育不良和骨密度,但未来可能会发现更多的过程受到调节。
Pharmacol Ther. 2010-12-24
Peptides. 2005-6
JCI Insight. 2021-5-10
Cell Signal. 2011-9-10
Int J Mol Sci. 2023-3-30
Endocr Rev. 2023-5-8
Nat Commun. 2022-1-10