Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, 6-155 Jackson Hall, 321 Church St. SE, Minneapolis, MN 55455, USA.
Department of Pharmacology, University of Minnesota, 6-120 Jackson Hall, 321 Church St. SE, Minneapolis, MN 55455, USA.
Sci Signal. 2019 Jan 29;12(566):eaau5378. doi: 10.1126/scisignal.aau5378.
Natriuretic peptides regulate multiple physiologic systems by activating transmembrane receptors containing intracellular guanylyl cyclase domains, such as GC-A and GC-B, also known as Npr1 and Npr2, respectively. Both enzymes contain an intracellular, phosphorylated pseudokinase domain (PKD) critical for activation of the C-terminal cGMP-synthesizing guanylyl cyclase domain. Because ATP allosterically activates GC-A and GC-B, we investigated how ATP binding to the PKD influenced guanylyl cyclase activity. Molecular modeling indicated that all the residues of the ATP-binding site of the prototypical kinase PKA, except the catalytic aspartate, are conserved in the PKDs of GC-A and GC-B. Kinase-inactivating alanine substitutions for the invariant lysine in subdomain II or the aspartate in the DYG-loop of GC-A and GC-B failed to decrease enzyme phosphate content, consistent with the PKDs lacking kinase activity. In contrast, both mutations reduced enzyme activation by blocking the ability of ATP to decrease the Michaelis constant without affecting peptide-dependent activation. The analogous lysine-to-alanine substitution in a glutamate-substituted phosphomimetic mutant form of GC-B also reduced enzyme activity, consistent with ATP stimulating guanylyl cyclase activity through an allosteric, phosphorylation-independent mechanism. Mutations designed to rigidify the conserved regulatory or catalytic spines within the PKDs increased guanylyl cyclase activity, increased sensitivity to natriuretic peptide, or reduced the Michaelis constant in the absence of ATP, consistent with ATP binding stabilizing the PKD in a conformation analogous to that of catalytically active kinases. We conclude that allosteric mechanisms evolutionarily conserved in the PKDs promote the catalytic activation of transmembrane guanylyl cyclases.
利钠肽通过激活包含细胞内鸟苷酸环化酶结构域的跨膜受体来调节多种生理系统,例如 GC-A 和 GC-B,分别也称为 Npr1 和 Npr2。这两种酶都包含一个细胞内磷酸化的假激酶结构域(PKD),对于激活 C 末端 cGMP 合成鸟苷酸环化酶结构域至关重要。由于 ATP 变构激活 GC-A 和 GC-B,我们研究了 ATP 结合 PKD 如何影响鸟苷酸环化酶活性。分子建模表明,除了催化天冬氨酸外,典型激酶 PKA 的 ATP 结合位点的所有残基都在 GC-A 和 GC-B 的 PKD 中保守。对于 GC-A 和 GC-B 的亚结构域 II 中的不变赖氨酸或 DYG 环中的天冬氨酸进行激酶失活的丙氨酸取代,未能降低酶的磷酸化含量,这与 PKD 缺乏激酶活性一致。相反,这两种突变通过阻止 ATP 降低米氏常数的能力来降低酶的激活,而不影响肽依赖性激活,从而减少酶的激活。GC-B 的谷氨酸取代磷酸模拟突变体形式中的类似赖氨酸到丙氨酸取代也降低了酶活性,这与 ATP 通过变构、非磷酸化机制刺激鸟苷酸环化酶活性一致。设计用于使 PKD 内的保守调节或催化棘变硬的突变增加了鸟苷酸环化酶活性,增加了对利钠肽的敏感性,或在没有 ATP 的情况下降低了米氏常数,这与 ATP 结合稳定 PKD 的构象类似于催化活性激酶的构象一致。我们得出结论,PKD 中进化保守的变构机制促进了跨膜鸟苷酸环化酶的催化激活。