Zhao Wen-Qin, Liao Yu-Xin, Chen Yu-Ting, Ma Liang, Yu Zi-Yang, Ding Si-Jing, Qin Ping-Li, Chen Xiang-Bai, Wang Qu-Quan
Hubei Key Laboratory of Optical Information and Pattern Recognition, Wuhan Institute of Technology, Wuhan 430205, P. R. China.
Hubei Key Laboratory of Optical Information and Pattern Recognition, Wuhan Institute of Technology, Wuhan 430205, P. R. China.
J Colloid Interface Sci. 2024 Sep;669:383-392. doi: 10.1016/j.jcis.2024.04.223. Epub 2024 May 1.
Phase junctions exhibit great potential in photocatalytic energy conversion, yet the narrow light response region and inefficient charge transfer limit their photocatalytic performance. Herein, an anatase/rutile phase junction modified by plasmonic TiN and oxygen vacancies (TiN/(A-R-TiO-Ov)) is prepared through an in-situ thermal transformation from TiN for efficient photothermal-assisted photocatalytic hydrogen production for the first time. The content of TiN, oxygen vacancies, and phase components in TiN/(A-R-TiO-Ov) hybrids can be well-adjusted by tuning the heating time. The as-prepared photocatalysts display a large specific area and wide light absorption due to the synergistic effect of plasmonic excitation, oxygen vacancies, and bandgap excitations. Meanwhile, the multi-interfaces between TiN, anatase, and rutile provide built-in electric fields for efficient separation of photoinduced carriers and hot electron injection via ohmic contact and type-Ⅱ band arrangement. As a result, the TiN/(A-R-TiO-Ov) photocatalyst shows an excellent photocatalytic hydrogen generation rate of 15.07 mmol/g/h, which is 20.6 times higher than that of titanium dioxide P25. Moreover, temperature-dependent photocatalytic tests reveal that the excellent photothermal conversion caused by plasmonic heating and crystal lattice vibrations in TiN/(A-R-TiO-Ov) has about 25 % enhancement in photocatalysis (18.84 mmol/g/h). This work provides new inspiration for developing high-performance photocatalysts by optimizing charge transfer and photothermal conversion.
相结在光催化能量转换方面具有巨大潜力,然而其狭窄的光响应区域和低效的电荷转移限制了它们的光催化性能。在此,首次通过从TiN进行原位热转变制备了一种由等离子体TiN和氧空位修饰的锐钛矿/金红石相结(TiN/(A-R-TiO-Ov)),用于高效光热辅助光催化产氢。通过调节加热时间,可以很好地调节TiN/(A-R-TiO-Ov)杂化物中TiN、氧空位和相组分的含量。由于等离子体激发、氧空位和带隙激发的协同作用,所制备的光催化剂具有大的比表面积和宽的光吸收。同时,TiN、锐钛矿和金红石之间的多界面通过欧姆接触和Ⅱ型能带排列为光生载流子的有效分离和热电子注入提供了内建电场。结果,TiN/(A-R-TiO-Ov)光催化剂表现出优异的光催化产氢速率,为15.07 mmol/g/h,比二氧化钛P-25高20.6倍。此外,温度依赖性光催化测试表明,TiN/(A-R-TiO-Ov)中由等离子体加热和晶格振动引起的优异光热转换在光催化中具有约25%的增强(18.84 mmol/g/h)。这项工作为通过优化电荷转移和光热转换来开发高性能光催化剂提供了新的灵感。