U.S. Geological Survey, Maryland-Delaware-D.C. Water Science Center, Baltimore, MD 21228, USA.
University of Maryland Baltimore County, Department of Chemical, Biochemical, and Environmental Engineering, Baltimore, MD 21250, USA.
Sci Total Environ. 2024 Jul 1;932:172996. doi: 10.1016/j.scitotenv.2024.172996. Epub 2024 May 6.
Perfluorooctane sulfonate (PFOS), one of the most frequently detected per- and polyfluoroalkyl substances (PFAS) occurring in soil, surface water, and groundwater near sites contaminated with aqueous film-forming foam (AFFF), has proven to be recalcitrant to many destructive remedies, including chemical oxidation. We investigated the potential to utilize microbially mediated reduction (bioreduction) to degrade PFOS and other PFAS through addition of a known dehalogenating culture, WBC-2, to soil obtained from an AFFF-contaminated site. A substantial decrease in total mass of PFOS (soil and water) was observed in microcosms amended with WBC-2 and chlorinated volatile organic compound (cVOC) co-contaminants - 46.4 ± 11.0 % removal of PFOS over the 45-day experiment. In contrast, perfluorooctanoate (PFOA) and 6:2 fluorotelomer sulfonate (6:2 FTS) concentrations did not decrease in the same microcosms. The low or non-detectable concentrations of potential metabolites in full PFAS analyses, including after application of the total oxidizable precursor assay, indicated that defluorination occurred to non-fluorinated compounds or ultrashort-chain PFAS. Nevertheless, additional research on the metabolites and degradation pathways is needed. Population abundances of known dehalorespirers did not change with PFOS removal during the experiment, making their association with PFOS removal unclear. An increased abundance of sulfate reducers in the genus Desulfosporosinus (Firmicutes) and Sulfurospirillum (Campilobacterota) was observed with PFOS removal, most likely linked to initiation of biodegradation by desulfonation. These results have important implications for development of in situ bioremediation methods for PFAS and advancing knowledge of natural attenuation processes.
全氟辛烷磺酸(PFOS)是在受水性成膜泡沫(AFFF)污染的场地附近的土壤、地表水和地下水中最常检测到的全氟和多氟烷基物质(PFAS)之一,它已被证明难以被许多破坏性的补救措施所去除,包括化学氧化。我们研究了利用微生物介导的还原(生物还原)来降解 PFOS 和其他 PFAS 的潜力,方法是向从 AFFF 污染场地获得的土壤中添加已知的脱卤培养物 WBC-2。在添加 WBC-2 和氯化挥发性有机化合物(cVOC)共污染物的微宇宙中,观察到 PFOS(土壤和水)的总质量大量减少 - 在 45 天的实验中,PFOS 的去除率为 46.4±11.0%。相比之下,在相同的微宇宙中,全氟辛酸(PFOA)和 6:2 氟代烷烃磺酸盐(6:2 FTS)的浓度没有降低。在全氟化合物分析中,包括在应用总可氧化前体测定法后,潜在代谢物的浓度很低或无法检测到,这表明脱氟作用发生在非氟化合物或超短链 PFAS 上。尽管如此,仍需要对代谢物和降解途径进行更多的研究。在实验过程中,随着 PFOS 的去除,已知脱卤呼吸菌的种群丰度没有变化,这使得它们与 PFOS 去除的关系不清楚。在 PFOS 去除过程中,观察到脱硫菌属(Firmicutes)和 Sulfurospirillum(Campilobacterota)中硫酸盐还原菌的丰度增加,这很可能与脱磺化引发生物降解有关。这些结果对开发 PFAS 的原位生物修复方法和推进自然衰减过程的知识具有重要意义。