Suppr超能文献

多机构验证放射组学特征识别软组织肉瘤术后进展。

Multi-institutional validation of a radiomics signature for identification of postoperative progression of soft tissue sarcoma.

机构信息

Department of Radiology, The Affiliated Hospital of Qingdao University, 16 Jiangsu Road, Qingdao, Shandong, China.

Department of Operation Center, Women and Children's Hospital, Qingdao University, Shandong, China.

出版信息

Cancer Imaging. 2024 May 8;24(1):59. doi: 10.1186/s40644-024-00705-8.

Abstract

BACKGROUND

To develop a magnetic resonance imaging (MRI)-based radiomics signature for evaluating the risk of soft tissue sarcoma (STS) disease progression.

METHODS

We retrospectively enrolled 335 patients with STS (training, validation, and The Cancer Imaging Archive sets, n = 168, n = 123, and n = 44, respectively) who underwent surgical resection. Regions of interest were manually delineated using two MRI sequences. Among 12 machine learning-predicted signatures, the best signature was selected, and its prediction score was inputted into Cox regression analysis to build the radiomics signature. A nomogram was created by combining the radiomics signature with a clinical model constructed using MRI and clinical features. Progression-free survival was analyzed in all patients. We assessed performance and clinical utility of the models with reference to the time-dependent receiver operating characteristic curve, area under the curve, concordance index, integrated Brier score, decision curve analysis.

RESULTS

For the combined features subset, the minimum redundancy maximum relevance-least absolute shrinkage and selection operator regression algorithm + decision tree classifier had the best prediction performance. The radiomics signature based on the optimal machine learning-predicted signature, and built using Cox regression analysis, had greater prognostic capability and lower error than the nomogram and clinical model (concordance index, 0.758 and 0.812; area under the curve, 0.724 and 0.757; integrated Brier score, 0.080 and 0.143, in the validation and The Cancer Imaging Archive sets, respectively). The optimal cutoff was - 0.03 and cumulative risk rates were calculated.

DATA CONCLUSION

To assess the risk of STS progression, the radiomics signature may have better prognostic power than a nomogram/clinical model.

摘要

背景

开发一种基于磁共振成像(MRI)的放射组学特征,用于评估软组织肉瘤(STS)疾病进展的风险。

方法

我们回顾性纳入了 335 名接受手术切除的 STS 患者(训练集、验证集和癌症成像档案集,n=168、n=123 和 n=44)。使用两种 MRI 序列手动勾画感兴趣区。在 12 个机器学习预测特征中,选择最佳特征,并将其预测评分输入 Cox 回归分析以构建放射组学特征。通过结合放射组学特征和使用 MRI 和临床特征构建的临床模型,创建一个列线图。对所有患者进行无进展生存分析。我们通过时间依赖性接收者操作特征曲线、曲线下面积、一致性指数、综合 Brier 评分、决策曲线分析来评估模型的性能和临床实用性。

结果

对于组合特征子集,最小冗余最大相关性-最小绝对收缩和选择算子回归算法+决策树分类器具有最佳预测性能。基于最优机器学习预测特征并通过 Cox 回归分析构建的放射组学特征比列线图和临床模型具有更好的预后能力和更低的误差(验证集和癌症成像档案集的一致性指数分别为 0.758 和 0.812;曲线下面积分别为 0.724 和 0.757;综合 Brier 评分分别为 0.080 和 0.143)。最佳截断值为-0.03,并计算了累积风险率。

数据结论

为了评估 STS 进展的风险,放射组学特征可能比列线图/临床模型具有更好的预后能力。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d171/11077743/4c3d78ddc1a4/40644_2024_705_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验