Suppr超能文献

用于颅内出血分类和弱监督定位的深度多尺度卷积特征学习

Deep multiscale convolutional feature learning for intracranial hemorrhage classification and weakly supervised localization.

作者信息

He Bishi, Xu Zhe, Zhou Dong, Zhang Lei

机构信息

School of Automation (School of Artificial Intelligence), Hangzhou Dianzi University, Hangzhou, 310018, Zhejiang, China.

出版信息

Heliyon. 2024 Apr 26;10(9):e30270. doi: 10.1016/j.heliyon.2024.e30270. eCollection 2024 May 15.

Abstract

OBJECTIVE

This study evaluated the performance of attentional fusion model-based multiscale features in classifying intracerebral hemorrhage and the localization of bleeding focus based on weakly supervised target localization.

METHODS

A publicly available dataset provided by the American College of Neuroradiology (ASNR) was used, consisting of 750,000 computed tomography (CT) scans of the brain, manually marked by radiologists for intracranial hemorrhage and five hemorrhage subtypes. A multiscale feature classification and weakly supervised localization framework based on an attentional fusion mechanism were applied, which could be annotated at the slice level and provided intracranial hemorrhage classification and hemorrhage focus localization.

RESULTS

The designed framework achieved excellent performance for classification and localization. The area under the curve (AUC) for predicting bleeding was 0.973. High AUC values were observed for the five hemorrhage subtypes (epidural AUC = 0.891, subdural AUC = 0.991, subarachnoid AUC = 0.983, intraventricular AUC = 0.995, intraparenchymal AUC = 0.990). This model outperformed the average entry-level radiology trainee compared to previously reported data.

CONCLUSION

The designed method quickly and accurately detected intracerebral hemorrhage, classifying hemorrhage subtypes and locating bleeding points with image-level annotation alone. The results indicate that this framework can significantly reduce diagnostic time while improving the detection of intracerebral hemorrhage in emergencies. It can thus be integrated into the diagnostic radiology workflow in the future.

摘要

目的

本研究评估了基于注意力融合模型的多尺度特征在脑内出血分类以及基于弱监督目标定位的出血灶定位方面的性能。

方法

使用了美国神经放射学会(ASNR)提供的一个公开可用数据集,该数据集由750,000例脑部计算机断层扫描(CT)组成,由放射科医生对颅内出血和五种出血亚型进行了手动标注。应用了基于注意力融合机制的多尺度特征分类和弱监督定位框架,该框架可在切片级别进行标注,并提供颅内出血分类和出血灶定位。

结果

所设计的框架在分类和定位方面取得了优异的性能。预测出血的曲线下面积(AUC)为0.973。五种出血亚型均观察到较高的AUC值(硬膜外AUC = 0.891,硬膜下AUC = 0.991,蛛网膜下腔AUC = 0.983,脑室内AUC = 0.995,脑实质内AUC = 0.990)。与先前报道的数据相比,该模型优于普通入门级放射科住院医师。

结论

所设计的方法能够快速准确地检测脑内出血,仅通过图像级标注就能对出血亚型进行分类并定位出血点。结果表明,该框架可以显著缩短诊断时间,同时提高急诊中脑内出血的检测率。因此,它未来可被整合到放射诊断工作流程中。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验