Suppr超能文献

硒细菌介导的涉及独特遗传密码的硒转化与摄取。

Selenobacteria-mediated Se transformation and uptake involving the unique genetic code.

作者信息

Liao Qing, Li Ao-Mei, Xing Ying, Liang Pan-Xia, Jiang Ze-Pu, Liu Yong-Xian, Huang Dong-Liang

机构信息

Guangxi Key Laboratory of Arable Land Conservation, Guangxi Academy of Agricultural Sciences, Nanning, China.

Guangxi Key Laboratory of Sugarcane Genetic Improvement, Guangxi Academy of Agricultural Sciences, Nanning, China.

出版信息

Front Plant Sci. 2024 Apr 24;15:1392355. doi: 10.3389/fpls.2024.1392355. eCollection 2024.

Abstract

Selenium (Se) is a crucial micronutrient for human health. Plants are the primary source of Se for humans. Selenium in the soil serves as the primary source of Se for plants. The soil contains high total Se content in large areas in Guangxi, China. However, the available Se is low, hindering Se uptake by plants. Microorganisms play a pivotal role in the activation of Se in the soil, thereby enhancing its uptake by plants. In this study, selenobacteria were isolated from Se-rich soils in Guangxi. Then two selenobacteria strains, YLB1-6 and YLB2-1, representing the highest (30,000 μg/mL) and lowest (10,000 μg/mL) Se tolerance levels among the Se-tolerant bacteria, were selected for subsequent analysis. Although the two selenobacteria exhibited distinct effects, they can significantly transform Se species, resulting in a decrease in the soil residual Se (RES-Se) content while concurrently increasing the available Se (AVA-Se) content. Selenobacteria also enhance the transformation of Se valencies, with a significant increase observed in soluble Se (SOL-Se). Additionally, selenobacteria can elevate the pH of acidic soil. Selenobacteria also promote the uptake of Se into plants. After treatment with YLB1-6 and YLB2-1, the Se content in the aboveground part of Chinese flowering cabbage increased by 1.96 times and 1.77 times, respectively, while the Se accumulation in the aboveground part of the plant significantly increased by 104.36% and 81.69%, respectively, compared to the control. Further whole-genome sequencing revealed the genetic difference between the two selenobacteria. Additionally, 46 and 38 candidate genes related to selenium utilization were identified from YLB1-6 and YLB2-1, respectively. This work accelerates our understanding of the potential molecular mechanism of Se biofortification by selenobacteria. It also provides microorganisms and gene targets for improving crop varieties or microorganisms to exploit the rich Se source in soil.

摘要

硒(Se)是人类健康必需的微量营养素。植物是人类硒的主要来源。土壤中的硒是植物硒的主要来源。中国广西大面积土壤中总硒含量较高。然而,有效硒含量较低,阻碍了植物对硒的吸收。微生物在土壤中硒的活化过程中起关键作用,从而提高植物对硒的吸收。本研究从广西富硒土壤中分离出硒细菌。然后选择了两株硒细菌菌株YLB1-6和YLB2-1,它们分别代表耐硒细菌中最高(30,000μg/mL)和最低(10,000μg/mL)的耐硒水平,用于后续分析。尽管这两株硒细菌表现出不同的效果,但它们都能显著转化硒形态,导致土壤残留硒(RES-Se)含量降低,同时有效硒(AVA-Se)含量增加。硒细菌还能促进硒价态的转化,可溶性硒(SOL-Se)显著增加。此外,硒细菌能提高酸性土壤的pH值。硒细菌还能促进植物对硒的吸收。用YLB1-6和YLB2-1处理后,菜心地上部分的硒含量分别增加了1.96倍和1.77倍,而与对照相比,植物地上部分的硒积累量分别显著增加了104.36%和81.69%。进一步的全基因组测序揭示了这两株硒细菌之间的遗传差异。此外,分别从YLB1-6和YLB2-1中鉴定出46个和38个与硒利用相关的候选基因。这项工作加快了我们对硒细菌生物强化硒潜在分子机制的理解。它还为改良作物品种或微生物以利用土壤中丰富的硒源提供了微生物和基因靶点。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4b0f/11076775/ab829f1e2ff1/fpls-15-1392355-g002.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验