Suppr超能文献

利用高度耐受亚硒酸盐的普罗维登斯菌 HF16 加速亚硒酸盐的生物修复——基于蛋白质组分析的亚硒酸盐还原的新机制。

Speeding up selenite bioremediation using the highly selenite-tolerant strain Providencia rettgeri HF16-A novel mechanism of selenite reduction based on proteomic analysis.

机构信息

Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, Anhui, China; Key Laboratory of Environmental Toxicology and Pollution Control Technology of Anhui Province, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230026, Anhui, China.

The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230001, Anhui, China; Intelligent Pathology Institute, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230036, Anhui, China.

出版信息

J Hazard Mater. 2021 Mar 15;406:124690. doi: 10.1016/j.jhazmat.2020.124690. Epub 2020 Nov 28.

Abstract

Selenite in the environment is extremely biotoxic, thus, the biotransformation of selenite into selenium nanoparticles (SeNPs) by microorganisms is gaining increasing interest. However, the relatively low selenite tolerance and slow processing by known microorganisms limit its application. In this study, a highly selenite-resistant strain (up to 800 mM) was isolated from coalmine soil and identified as Providencia rettgeri HF16. Remarkably, 5 mM selenite was entirely transformed by this strain within 24 h, and SeNPs were detected as early as 2 h of incubation, which is a more rapid conversion than that described for other microorganisms. The SeNPs were spherical in shape with diameters ranging from 120 nm to 295 nm, depending on the incubation time. Moreover, in vitro selenite-reduction activity was detected in the cytoplasmic protein fraction with NADPH or NADH serving as electron donors. Proteomics analysis and key enzyme activity tests revealed the presence of a sulfite reductase-mediated selenite reduction pathway. To our knowledge, this is the first report to identify the involvement of sulfite reductase in selenite reduction under physiological conditions. P. rettgeri HF16 could be a suitable and robust biocatalyst for the bioremediation of selenite, and would accelerate the efficient and economical synthesis of selenium nanoparticles.

摘要

环境中的亚硒酸盐具有极强的生物毒性,因此,微生物将亚硒酸盐转化为硒纳米颗粒(SeNPs)的生物转化过程引起了越来越多的关注。然而,已知微生物对亚硒酸盐的耐受性相对较低且转化速度较慢,限制了其应用。在本研究中,从煤矿土壤中分离到一株具有高耐硒酸盐能力(高达 800 mM)的菌株,并鉴定为雷氏普罗威登斯菌 HF16。值得注意的是,该菌株在 24 小时内即可将 5 mM 的亚硒酸盐完全转化,并且早在孵育 2 小时即可检测到硒纳米颗粒,这比其他微生物的转化速度更快。硒纳米颗粒呈球形,直径范围为 120nm 至 295nm,具体取决于孵育时间。此外,在以 NADPH 或 NADH 作为电子供体的细胞质蛋白部分检测到了体外亚硒酸盐还原活性。蛋白质组学分析和关键酶活性测试表明,存在一种亚硫酸盐还原酶介导的亚硒酸盐还原途径。据我们所知,这是首次报道在生理条件下亚硫酸盐还原酶参与亚硒酸盐还原。雷氏普罗威登斯菌 HF16 可能是一种合适且强大的生物催化剂,可用于亚硒酸盐的生物修复,并将加速硒纳米颗粒的高效和经济合成。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验