Suppr超能文献

超快亲锌离子导体实现低温锌金属电池的快速界面去溶剂化动力学

Superfast Zincophilic Ion Conductor Enables Rapid Interfacial Desolvation Kinetics for Low-Temperature Zinc Metal Batteries.

作者信息

Cheng Xiaomin, Zuo Yinze, Zhang Yongzheng, Zhao Xinyu, Jia Lujie, Zhang Jing, Li Xiang, Wu Ziling, Wang Jian, Lin Hongzhen

机构信息

i-Lab & CAS Key Laboratory of Nanophotonic Materials and Devices, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou, 215123, P. R. China.

Institute of New Energy Materials and Engineering, College of Materials Science and Engineering, Fuzhou University, Fuzhou, 350108, P. R. China.

出版信息

Adv Sci (Weinh). 2024 Jul;11(28):e2401629. doi: 10.1002/advs.202401629. Epub 2024 May 9.

Abstract

Low-temperature rechargeable aqueous zinc metal batteries (AZMBs) as highly promising candidates for energy storage are largely hindered by huge desolvation energy barriers and depressive Zn migration kinetics. In this work, a superfast zincophilic ion conductor of layered zinc silicate nanosheet (LZS) is constructed on a metallic Zn surface, as an artificial layer and ion diffusion accelerator. The experimental and simulation results reveal the zincophilic ability and layer structure of LZS not only promote the desolvation kinetics of [Zn(HO)] but also accelerate the Zn transport kinetics across the anode/electrolyte interface, guiding uniform Zn deposition. Benefiting from these features, the LZS-modified Zn anodes showcase long-time stability (over 3300 h) and high Coulombic efficiency with ≈99.8% at 2 mA cm, respectively. Even reducing the environment temperature down to 0 °C, ultralong cycling stability up to 3600 h and a distinguished rate performance are realized. Consequently, the assembled Zn@LZS//VO full cells deliver superior cyclic stability (344.5 mAh g after 200 cycles at 1 A g) and rate capability (285.3 mAh g at 10 A g) together with a low self-discharge rate, highlighting the bright future of low-temperature AZMBs.

摘要

低温可充电水系锌金属电池(AZMBs)作为极具潜力的储能候选者,在很大程度上受到巨大的去溶剂化能垒和缓慢的锌迁移动力学的阻碍。在这项工作中,一种层状硅酸锌纳米片(LZS)的超快速亲锌离子导体被构建在金属锌表面,作为人工层和离子扩散促进剂。实验和模拟结果表明,LZS的亲锌能力和层状结构不仅促进了[Zn(HO)]的去溶剂化动力学,还加速了锌在阳极/电解质界面的传输动力学,引导锌均匀沉积。受益于这些特性,LZS修饰的锌阳极分别展现出长时间稳定性(超过3300小时)和在2 mA cm下约99.8%的高库仑效率。即使将环境温度降至0°C,仍可实现长达3600小时的超长循环稳定性和出色的倍率性能。因此,组装的Zn@LZS//VO全电池具有优异的循环稳定性(在1 A g下200次循环后为344.5 mAh g)和倍率性能(在10 A g下为285.3 mAh g)以及低自放电率,凸显了低温AZMBs的光明前景。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2a21/11267323/f13dae96e859/ADVS-11-2401629-g004.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验