Marimuthu Sathish, Prabhakaran Shyma Arunkumar, Sathyanarayanan Shriswaroop, Gopal Tamilselvi, James Jaimson T, Nagalingam Suruthi Priya, Gunaseelan Bharath, Babu Sivasri, Sellappan Raja, Grace Andrews Nirmala
Centre for Nanotechnology Research (CNR), Vellore Institute of Technology, Vellore-632014, Tamil Nadu, India.
Nanoscale. 2024 May 30;16(21):10108-10141. doi: 10.1039/d4nr01053a.
Integrating MXene into perovskite solar cells (PSCs) has heralded a new era of efficient and stable photovoltaic devices owing to their supreme electrical conductivity, excellent carrier mobility, adjustable surface functional groups, excellent transparency and superior mechanical properties. This review provides a comprehensive overview of the experimental and computational techniques employed in the synthesis, characterization, coating techniques and performance optimization of MXene additive in electrodes, hole transport layer (HTL), electron transport layer (ETL) and perovskite photoactive layer of the perovskite solar cells (PSCs). Experimentally, the synthesis of MXene involves various methods, such as selective etching of MAX phases and subsequent delamination. At the same time, characterization techniques encompass X-ray diffraction, scanning electron microscopy, and X-ray photoelectron spectroscopy, which elucidate the structural and chemical properties of MXene. Experimental strategies for fabricating PSCs involving MXene include interfacial engineering, charge transport enhancement, and stability improvement. On the computational front, density functional theory calculations, drift-diffusion modelling, and finite element analysis are utilized to understand MXene's electronic structure, its interface with perovskite, and the transport mechanisms within the devices. This review serves as a roadmap for researchers to leverage a diverse array of experimental and computational methods in harnessing the potential of MXene for advanced PSCs.
由于MXene具有极高的电导率、出色的载流子迁移率、可调节的表面官能团、优异的透明度和卓越的机械性能,将其集成到钙钛矿太阳能电池(PSC)中开创了高效稳定光伏器件的新时代。本文综述了用于钙钛矿太阳能电池(PSC)电极、空穴传输层(HTL)、电子传输层(ETL)和钙钛矿光活性层中MXene添加剂的合成、表征、涂层技术和性能优化的实验和计算技术。在实验方面,MXene的合成涉及多种方法,如MAX相的选择性蚀刻和随后的分层。同时,表征技术包括X射线衍射、扫描电子显微镜和X射线光电子能谱,这些技术阐明了MXene的结构和化学性质。涉及MXene的PSC制造实验策略包括界面工程、电荷传输增强和稳定性改善。在计算方面,利用密度泛函理论计算、漂移扩散建模和有限元分析来理解MXene的电子结构、其与钙钛矿的界面以及器件内的传输机制。本文综述为研究人员利用各种实验和计算方法挖掘MXene在先进PSC中的潜力提供了路线图。