Suppr超能文献

了解命名实体识别:更好的信息检索。

Getting to Know Named Entity Recognition: Better Information Retrieval.

机构信息

George A. Smathers Libraries at the University of Florida, Gainesville, Florida, USA.

出版信息

Med Ref Serv Q. 2024 Apr-Jun;43(2):196-202. doi: 10.1080/02763869.2024.2335139. Epub 2024 May 9.

Abstract

Named entity recognition (NER) is a powerful computer system that utilizes various computing strategies to extract information from raw text input, since the early 1990s. With rapid advancement in AI and computing, NER models have gained significant attention and been serving as foundational tools across numerus professional domains to organize unstructured data for research and practical applications. This is particularly evident in the medical and healthcare fields, where NER models are essential in efficiently extract critical information from complex documents that are challenging for manual review. Despite its successes, NER present limitations in fully comprehending natural language nuances. However, the development of more advanced and user-friendly models promises to improve work experiences of professional users significantly.

摘要

命名实体识别(NER)是一种强大的计算机系统,自 20 世纪 90 年代初以来,它利用各种计算策略从原始文本输入中提取信息。随着人工智能和计算技术的飞速发展,NER 模型受到了广泛关注,并成为许多专业领域的基础工具,用于组织研究和实际应用中的非结构化数据。这在医疗和保健领域尤为明显,NER 模型在从复杂文档中高效提取关键信息方面发挥着重要作用,这些文档对于人工审查来说具有挑战性。尽管取得了成功,但 NER 在完全理解自然语言细微差别方面存在局限性。然而,更先进和用户友好的模型的开发有望显著改善专业用户的工作体验。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验