Ridha Dalal M, Al-Awady Mohammed J, Abd Al-Zwaid Afrah J, Balakit Asim A, Al-Dahmoshi Hussein O M, Alotaibi Mohammad Hayal, El-Hiti Gamal A
Department of Biology, College of Science, University of Babylon, Iraq.
Department of Medical Biotechnology Faculty of Biotechnology, Al Qasim Green University Babylon, Iraq.
Int J Pharm. 2024 Jun 10;658:124214. doi: 10.1016/j.ijpharm.2024.124214. Epub 2024 May 8.
The crucial demand to overcome the issue of multidrug resistance is required to refine the performance of antibiotics. Such a process can be achieved by fastening them to compatible nanoparticles to obtain effective pharmaceuticals at a low concentration. Thus, selenium nanoparticles (Se NPs) are considered biocompatible agents that are applied to prevent infections resulting from bacterial resistance to multi-antibiotics. The current evaluated the effectiveness of Se NPs and their conjugates with antibiotics such as amikacin (AK), levofloxacin (LEV), and piperacillin (PIP) against Pseudomonas aeruginosa (P. aeruginosa). In addition, the study determined the antibacterial and antibiofilm properties of Se NPs and their conjugates with LEV against urinary tract pathogens such as Staphylococcus aureus (S. aureus), Enterococcus faecalis (E. faecalis), P. aeruginosa, and Escherichia coli (E. coli). The result of minimum inhibitory concentration (MIC) and minimal bactericidal concentration (MBC) for eight isolates of P. aeruginosa revealed that the conjugation of Se NPs with AK, LEV, and PIP resulted in a reduction in the concentration of antibiotic-conjugated Se NPs. The concentration was found to be about 10-20 times lower than that of bare antibiotics. The MIC of the Se NPs with LEV (i.e., Se NPs:LEV) for S. aureus, E. faecalis, P. aeruginosa, and E. coli was found to be 1.4:0.5, 0.7:0.25, 22:8, and 11:4 µg/mL, respectively. The results of the half-maximal inhibitory concentration (IC) demonstrated that Se NPs:LEV conjugate have inhibited 50 % of the mature biofilms of S. aureus, E. faecalis, P. aeruginosa, and E. coli at a concentration of 27.5 ± 10.5, 18.8 ± 3.1, 40.6 ± 10.7, and 21.6 ± 3.3 µg/mL, respectively compared to the control. It has been suggested that the antibiotic-conjugated Se NPs have great potential for biomedical applications. The conjugation of Se NPs with AK, LEV, and PIP increases the antibacterial potency against resistant pathogens at a low concentration.
克服多重耐药性问题的关键需求是提高抗生素的性能。这一过程可以通过将它们与相容性纳米颗粒结合来实现,从而在低浓度下获得有效的药物。因此,硒纳米颗粒(Se NPs)被认为是生物相容性试剂,可用于预防因细菌对多种抗生素耐药而导致的感染。本研究评估了Se NPs及其与阿米卡星(AK)、左氧氟沙星(LEV)和哌拉西林(PIP)等抗生素的缀合物对铜绿假单胞菌(P. aeruginosa)的有效性。此外,该研究还测定了Se NPs及其与LEV的缀合物对金黄色葡萄球菌(S. aureus)、粪肠球菌(E. faecalis)、铜绿假单胞菌和大肠杆菌(E. coli)等泌尿道病原体的抗菌和抗生物膜特性。对8株铜绿假单胞菌的最低抑菌浓度(MIC)和最低杀菌浓度(MBC)结果显示,Se NPs与AK、LEV和PIP的缀合导致抗生素缀合的Se NPs浓度降低。发现该浓度比单纯抗生素低约10至20倍。Se NPs与LEV(即Se NPs:LEV)对金黄色葡萄球菌、粪肠球菌、铜绿假单胞菌和大肠杆菌的MIC分别为1.4:0.5、0.7:0.25、22:8和11:4 µg/mL。半数最大抑制浓度(IC)结果表明,与对照相比,Se NPs:LEV缀合物在浓度分别为27.5±10.5、18.8±3.1、40.6±10.7和21.6±3.3 µg/mL时,分别抑制了金黄色葡萄球菌、粪肠球菌、铜绿假单胞菌和大肠杆菌50%的成熟生物膜。有人认为,抗生素缀合的Se NPs在生物医学应用方面具有巨大潜力。Se NPs与AK、LEV和PIP的缀合在低浓度下提高了对耐药病原体的抗菌效力。