Suppr超能文献

通过相变优化 TiZrNbTa 中熵合金/β-Ti 复合材料的细胞相容性和力学性能。

Optimizing the cell compatibility and mechanical properties in TiZrNbTa medium-entropy alloy/β-Ti composites through phase transformation.

机构信息

School of Materials Science and Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, China; Institute of Intelligent Manufacturing Technology, Shenzhen Polytechnic University, ShenZhen, 518055, China.

Department of Orthopedic, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, 421000, China; Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, 310000, China.

出版信息

Acta Biomater. 2024 Jun;181:469-482. doi: 10.1016/j.actbio.2024.05.004. Epub 2024 May 7.

Abstract

Medium-entropy alloys (MEAs) typically exhibit outstanding mechanical properties, but their high Young's modulus results in restricted clinical applications. Mismatched Young's modulus between implant materials and human bones can lead to "stress shielding" effects, leading to implant failure. In contrast, β-Ti alloys demonstrate a lower Young's modulus compared to MEAs, albeit with lower strength. In the present study, based on the bimodal grain size distribution (BGSD) strategy, a series of high-performance TiZrNbTa/Ti composites are obtained by combining TiZrNbTa MEA powders with nano-scale grain sizes and commercially pure Ti (CP-Ti) powders with micro-scale grain sizes. Concurrently, Zr, Nb, and Ta that are β-Ti stabilizer elements diffuse into Ti, inducing an isomorphous transformation in Ti from the high Young's modulus α-Ti phase to the low Young's modulus β-Ti phase at room temperature, optimizing the mechanical biocompatibility. The TiZrNbTa/β-Ti composite demonstrates a yield strength of 1490 ± 83 MPa, ductility of 20.7 % ± 2.9 %, and Young's modulus of 87.6 ± 1.6 GPa. Notably, the yield strength of the TiZrNbTa/β-Ti composite surpasses that of sintered CP-Ti by 2.6-fold, and its ductility outperforms TiZrNbTa MEA by 2.3-fold. The Young's modulus of the TiZrNbTa/β-Ti composite is reduced by 28 % and 36 % compared to sintered CP-Ti and TiZrNbTa MEA, respectively. Additionally, it demonstrates superior biocompatibility compared to CP-Ti plate, sintered CP-Ti, and TiZrNbTa MEA. With a good combination of mechanical properties and biocompatibility, the TiZrNbTa/β-Ti composite exhibits significant potential for clinical applications as metallic biomaterials. STATEMENT OF SIGNIFICANCE: This work combines TiZrNbTa MEA with nano-grains and commercially pure Ti with micro-grains to fabricate a TiZrNbTa/β-Ti composite with bimodal grain-size, which achieves a yield strength of 1490 ± 83 MPa and a ductility of 20.7 % ± 2.9 %. Adhering to the ISO 10993-5 standard, the TiZrNbTa/β-Ti composite qualifies as a non-cytotoxic material, achieving a Class 0 cytotoxicity rating and demonstrating outstanding biocompatibility akin to commercially pure Ti. Drawing on element diffusion, Zr, Nb, and Ta serve not only as solvent atoms to achieve solid-solution strengthening but also as stabilizers for the transformation of the β-Ti crystal structure. This work offers a novel avenue for designing advanced biomedical Ti alloys with elevated strength and plasticity alongside a reduced Young's modulus.

摘要

中熵合金(MEA)通常表现出优异的力学性能,但它们的杨氏模量较高,导致临床应用受限。植入材料与人体骨骼之间的杨氏模量不匹配会导致“应力屏蔽”效应,从而导致植入物失效。相比之下,β-Ti 合金的杨氏模量比 MEA 低,但强度也较低。在本研究中,基于双峰晶粒尺寸分布(BGSD)策略,通过将具有纳米级晶粒尺寸的 TiZrNbTa MEA 粉末与具有微米级晶粒尺寸的商用纯 Ti(CP-Ti)粉末相结合,获得了一系列高性能 TiZrNbTa/Ti 复合材料。同时,β-Ti 稳定剂元素 Zr、Nb 和 Ta 扩散到 Ti 中,导致 Ti 从高杨氏模量的 α-Ti 相室温下转变为低杨氏模量的 β-Ti 相,实现机械生物相容性的优化。TiZrNbTa/β-Ti 复合材料的屈服强度为 1490±83MPa,延伸率为 20.7%±2.9%,杨氏模量为 87.6±1.6GPa。值得注意的是,TiZrNbTa/β-Ti 复合材料的屈服强度比烧结 CP-Ti 提高了 2.6 倍,延伸率比 TiZrNbTa MEA 提高了 2.3 倍。TiZrNbTa/β-Ti 复合材料的杨氏模量比烧结 CP-Ti 和 TiZrNbTa MEA 分别降低了 28%和 36%。此外,与 CP-Ti 板、烧结 CP-Ti 和 TiZrNbTa MEA 相比,它具有更好的生物相容性。TiZrNbTa/β-Ti 复合材料具有良好的机械性能和生物相容性,作为金属生物材料具有显著的临床应用潜力。

意义声明:本工作将 TiZrNbTa MEA 与纳米晶粒和商用纯钛与微晶粒相结合,制备出具有双峰晶粒尺寸的 TiZrNbTa/β-Ti 复合材料,其屈服强度为 1490±83MPa,延伸率为 20.7%±2.9%。根据 ISO 10993-5 标准,TiZrNbTa/β-Ti 复合材料被评为非细胞毒性材料,细胞毒性等级为 0 级,具有出色的生物相容性,类似于商用纯钛。利用元素扩散,Zr、Nb 和 Ta 不仅作为溶剂原子实现固溶强化,而且作为β-Ti 晶体结构转变的稳定剂。本工作为设计具有高强度、高塑性和低杨氏模量的先进生物医学 Ti 合金提供了一条新途径。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验