Department of Biomedicine, Neuroscience and Advanced Diagnostics (BiND), University of Palermo, Palermo, Italy.
Institute for High-Performance Computing and Networking (ICAR-CNR), Italian National Research Council, Palermo, Italy.
Radiol Med. 2024 Jul;129(7):977-988. doi: 10.1007/s11547-024-01826-7. Epub 2024 May 9.
To investigate the feasibility of an artificial intelligence (AI)-based semi-automated segmentation for the extraction of ultrasound (US)-derived radiomics features in the characterization of focal breast lesions (FBLs).
Two expert radiologists classified according to US BI-RADS criteria 352 FBLs detected in 352 patients (237 at Center A and 115 at Center B). An AI-based semi-automated segmentation was used to build a machine learning (ML) model on the basis of B-mode US of 237 images (center A) and then validated on an external cohort of B-mode US images of 115 patients (Center B).
A total of 202 of 352 (57.4%) FBLs were benign, and 150 of 352 (42.6%) were malignant. The AI-based semi-automated segmentation achieved a success rate of 95.7% for one reviewer and 96% for the other, without significant difference (p = 0.839). A total of 15 (4.3%) and 14 (4%) of 352 semi-automated segmentations were not accepted due to posterior acoustic shadowing at B-Mode US and 13 and 10 of them corresponded to malignant lesions, respectively. In the validation cohort, the characterization made by the expert radiologist yielded values of sensitivity, specificity, PPV and NPV of 0.933, 0.9, 0.857, 0.955, respectively. The ML model obtained values of sensitivity, specificity, PPV and NPV of 0.544, 0.6, 0.416, 0.628, respectively. The combined assessment of radiologists and ML model yielded values of sensitivity, specificity, PPV and NPV of 0.756, 0.928, 0.872, 0.855, respectively.
AI-based semi-automated segmentation is feasible, allowing an instantaneous and reproducible extraction of US-derived radiomics features of FBLs. The combination of radiomics and US BI-RADS classification led to a potential decrease of unnecessary biopsy but at the expense of a not negligible increase of potentially missed cancers.
研究基于人工智能(AI)的半自动分割在提取超声(US)衍生的放射组学特征以对局灶性乳腺病变(FBL)进行特征描述中的可行性。
两位专家根据 US BI-RADS 标准对 352 例患者(中心 A 237 例,中心 B 115 例)的 352 个 FBL 进行分类。基于中心 A 的 237 个图像的 B 型 US 构建了一个机器学习(ML)模型,使用基于 AI 的半自动分割对其进行分割,然后在中心 B 的 115 个患者的 B 型 US 图像外部队列中对其进行验证。
352 个 FBL 中共有 202 个(57.4%)为良性,150 个(42.6%)为恶性。基于 AI 的半自动分割的成功率为一位审阅者的 95.7%,另一位审阅者的 96%,无显著差异(p=0.839)。由于 B 型 US 中的后向声影,共有 352 个半自动分割中的 15 个(4.3%)和 14 个(4%)未被接受,其中分别有 13 个和 10 个对应于恶性病变。在验证队列中,专家放射科医生的特征描述得出的敏感性、特异性、PPV 和 NPV 分别为 0.933、0.9、0.857、0.955。ML 模型获得的敏感性、特异性、PPV 和 NPV 分别为 0.544、0.6、0.416、0.628。放射科医生和 ML 模型的联合评估得出的敏感性、特异性、PPV 和 NPV 分别为 0.756、0.928、0.872、0.855。
基于 AI 的半自动分割是可行的,它可以即时且可重复地提取 FBL 的 US 衍生的放射组学特征。放射组学和 US BI-RADS 分类的结合可能导致不必要的活检减少,但以潜在错过癌症的风险增加为代价。