Cilenti Lucia, Di Gregorio Jacopo, Mahar Rohit, Liu Fei, Ambivero Camilla T, Periasamy Muthu, Merritt Matthew E, Zervos Antonis S
Burnett School of Biomedical Sciences, University of Central Florida College of Medicine, Orlando, FL, United States.
Department of Chemistry, Hemvati Nandan Bahuguna Garhwal University (A Central University), Srinagar Garhwal, Uttarakhand, India.
Front Mol Biosci. 2024 Apr 25;11:1397565. doi: 10.3389/fmolb.2024.1397565. eCollection 2024.
Obesity is a growing epidemic affecting millions of people worldwide and a major risk factor for a multitude of chronic diseases and premature mortality. Accumulating evidence suggests that mitochondria have a profound role in diet-induced obesity and the associated metabolic changes, but the molecular mechanisms linking mitochondria to obesity remain poorly understood. Our studies have identified a new function for mitochondrial MUL1 E3 ubiquitin ligase, a protein known to regulate mitochondrial dynamics and mitophagy, in the control of energy metabolism and lipogenesis. Genetic deletion of in mice impedes mitophagy and presents a metabolic phenotype that is resistant to high-fat diet (HFD)-induced obesity and metabolic syndrome. Several metabolic and lipidomic pathways are perturbed in the liver and white adipose tissue (WAT) of animals on HFD, including the one driven by Stearoyl-CoA Desaturase 1 (SCD1), a pivotal regulator of lipid metabolism and obesity. In addition, key enzymes crucial for lipogenesis and fatty acid oxidation such as ACC1, FASN, AMPK, and CPT1 are also modulated in the absence of MUL1. The concerted action of these enzymes, in the absence of MUL1, results in diminished fat storage and heightened fatty acid oxidation. Our findings underscore the significance of MUL1-mediated mitophagy in regulating lipogenesis and adiposity, particularly in the context of HFD. Consequently, our data advocate the potential of MUL1 as a therapeutic target for drug development in the treatment of obesity, insulin resistance, NAFLD, and cardiometabolic diseases.
肥胖是一种日益流行的疾病,影响着全球数百万人,是多种慢性疾病和过早死亡的主要风险因素。越来越多的证据表明,线粒体在饮食诱导的肥胖及相关代谢变化中起重要作用,但线粒体与肥胖之间的分子机制仍知之甚少。我们的研究发现线粒体MUL1 E3泛素连接酶有新功能,该蛋白已知可调节线粒体动力学和线粒体自噬,在能量代谢和脂肪生成控制中发挥作用。小鼠中该蛋白的基因缺失会阻碍线粒体自噬,并呈现出对高脂饮食(HFD)诱导的肥胖和代谢综合征有抗性的代谢表型。高脂饮食喂养的该蛋白缺失动物的肝脏和白色脂肪组织(WAT)中,包括由硬脂酰辅酶A去饱和酶1(SCD1)驱动的通路在内的几种代谢和脂质组学通路受到干扰,SCD1是脂质代谢和肥胖的关键调节因子。此外,在没有MUL1的情况下,对脂肪生成和脂肪酸氧化至关重要的关键酶如ACC1、FASN、AMPK和CPT1也会受到调节。在没有MUL1的情况下,这些酶的协同作用导致脂肪储存减少和脂肪酸氧化增加。我们的研究结果强调了MUL1介导的线粒体自噬在调节脂肪生成和肥胖中的重要性,特别是在高脂饮食背景下。因此,我们的数据表明MUL1作为肥胖、胰岛素抵抗、非酒精性脂肪性肝病和心脏代谢疾病药物开发治疗靶点的潜力。