Suppr超能文献

通过自组装制备用于高容量锂氧电池的无粘结剂三维多孔石墨烯阴极

Binder-Free Three-Dimensional Porous Graphene Cathodes via Self-Assembly for High-Capacity Lithium-Oxygen Batteries.

作者信息

Liu Yanna, Meng Wen, Gao Yuying, Zhao Menglong, Li Ming, Xiao Liang

机构信息

School of Chemistry, Chemical Engineering and Life Sciences, Wuhan University of Technology, Wuhan 430070, China.

Zhengzhou Yutong Bus Co., Ltd., Zhengzhou 450016, China.

出版信息

Nanomaterials (Basel). 2024 Apr 25;14(9):754. doi: 10.3390/nano14090754.

Abstract

The porous architectures of oxygen cathodes are highly desired for high-capacity lithium-oxygen batteries (LOBs) to support cathodic catalysts and provide accommodation for discharge products. However, controllable porosity is still a challenge for laminated cathodes with cathode materials and binders, since polymer binders usually shield the active sites of catalysts and block the pores of cathodes. In addition, polymer binders such as poly(vinylidene fluoride) (PVDF) are not stable under the nucleophilic attack of intermediate product superoxide radicals in the oxygen electrochemical environment. The parasitic reactions and blocking effect of binders deteriorate and then quickly shut down the operation of LOBs. Herein, the present work proposes a binder-free three-dimensional (3D) porous graphene (PG) cathode for LOBs, which is prepared by the self-assembly and the chemical reduction of GO with triblock copolymer soft templates (Pluronic F127). The interconnected mesoporous architecture of resultant 3D PG cathodes achieved an ultrahigh capacity of 10,300 mAh g for LOBs. Further, the cathodic catalysts ruthenium (Ru) and manganese dioxide (MnO) were, respectively, loaded onto the inner surface of PG cathodes to lower the polarization and enhance the cycling performance of LOBs. This work provides an effective way to fabricate free-standing 3D porous oxygen cathodes for high-performance LOBs.

摘要

对于高容量锂氧电池(LOBs)而言,氧阴极的多孔结构非常理想,可用于支撑阴极催化剂并为放电产物提供容纳空间。然而,对于由阴极材料和粘合剂组成的层压阴极来说,可控孔隙率仍是一项挑战,因为聚合物粘合剂通常会屏蔽催化剂的活性位点并堵塞阴极的孔隙。此外,诸如聚偏二氟乙烯(PVDF)之类的聚合物粘合剂在氧电化学环境中会受到中间产物超氧自由基的亲核攻击,从而不稳定。粘合剂的寄生反应和阻塞效应会使LOBs的性能恶化,进而迅速停止其运行。在此,本工作提出了一种用于LOBs的无粘合剂三维(3D)多孔石墨烯(PG)阴极,它是通过氧化石墨烯(GO)与三嵌段共聚物软模板(Pluronic F127)的自组装和化学还原制备而成。所得3D PG阴极的相互连接的介孔结构实现了LOBs高达10300 mAh g的超高容量。此外,分别将阴极催化剂钌(Ru)和二氧化锰(MnO)负载到PG阴极的内表面,以降低极化并提高LOBs的循环性能。这项工作为制造用于高性能LOBs的自立式3D多孔氧阴极提供了一种有效方法。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e817/11085291/bbedbca1c59f/nanomaterials-14-00754-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验