State Key Joint Laboratory of Environment Simulation and Pollution Control, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China.
Ganjiang Innovation Academy, Chinese Academy of Sciences, Ganzhou 341000, China.
Environ Sci Technol. 2024 Jun 11;58(23):10357-10367. doi: 10.1021/acs.est.4c00868. Epub 2024 May 10.
The urgent environmental concern of methane abatement, attributed to its high global warming potential, necessitates the development of methane oxidation catalysts (MOC) with enhanced low-temperature activity and durability. Herein, an iridium-doped PdO nanoparticle supported on silicalite-1 zeolite (PdIr/S-1) catalyst was synthesized and applied for methane catalytic combustion. Comprehensive characterizations confirmed the atomically dispersed nature of iridium on the surface of PdO nanoparticles, creating an Ir-O-Pd microstructure. The atomically doped Ir transferred more electrons to adjacent oxygen atoms, modifying the electronic structure of PdO and thus enhancing the redox ability of the PdIr/S-1 catalysts. This electronic modulation facilitated methane adsorption on the Pd site of Ir-O-Pd, reducing the energy barrier for C-H bond cleavage and thereby increasing the reaction rate for methane oxidation. Consequently, the optimized PdIr/S-1 showed outstanding low-temperature activity for methane combustion ( = 276 °C) after aging and maintained long-term stability over 100 h under simulated exhaust conditions. Remarkably, the novel PdIr/S-1 catalyst demonstrated significantly enhanced activity even after undergoing harsh hydrothermal aging at 750 °C for 16 h, significantly outperforming the conventional Pd/AlO catalyst. This work provides valuable insights for designing efficient and durable MOC catalysts, addressing the critical issue of methane abatement.
甲烷减排是当前紧迫的环境关切,这归因于其巨大的全球变暖潜能。因此,开发具有增强低温活性和耐久性的甲烷氧化催化剂(MOC)迫在眉睫。在此,我们制备了一种负载在硅沸石-1(S-1)沸石上的氧化铱掺杂钯纳米颗粒(PdIr/S-1)催化剂,并将其应用于甲烷催化燃烧。综合表征证实了铱在钯纳米颗粒表面的原子分散特性,形成了 Ir-O-Pd 微观结构。原子掺杂的 Ir 将更多的电子转移到相邻的氧原子上,从而改变了 PdO 的电子结构,增强了 PdIr/S-1 催化剂的氧化还原能力。这种电子调制促进了甲烷在 Ir-O-Pd 位上的吸附,降低了 C-H 键断裂的能垒,从而提高了甲烷氧化的反应速率。因此,优化后的 PdIr/S-1 在老化后表现出出色的低温甲烷燃烧活性(T10 = 276°C),并在模拟废气条件下经过 100 小时的长期稳定性测试后仍保持稳定。值得注意的是,即使在经过 750°C 苛刻的水热处理 16 小时后,新型 PdIr/S-1 催化剂仍表现出显著增强的活性,明显优于传统的 Pd/Al2O3 催化剂。这项工作为设计高效、耐用的 MOC 催化剂提供了有价值的思路,解决了甲烷减排这一关键问题。