Suppr超能文献

免疫检查点抑制剂治疗中肝免疫相关不良事件的表型分析。

Phenotyping Hepatic Immune-Related Adverse Events in the Setting of Immune Checkpoint Inhibitor Therapy.

机构信息

VA Boston Healthcare System, Boston, MA.

Corporal Michael J. Crescenz Department of Veterans Affairs Medical Center, Philadelphia, PA.

出版信息

JCO Clin Cancer Inform. 2024 May;8:e2300159. doi: 10.1200/CCI.23.00159.

Abstract

PURPOSE

We present and validate a rule-based algorithm for the detection of moderate to severe liver-related immune-related adverse events (irAEs) in a real-world patient cohort. The algorithm can be applied to studies of irAEs in large data sets.

METHODS

We developed a set of criteria to define hepatic irAEs. The criteria include: the temporality of elevated laboratory measurements in the first 2-14 weeks of immune checkpoint inhibitor (ICI) treatment, steroid intervention within 2 weeks of the onset of elevated laboratory measurements, and intervention with a duration of at least 2 weeks. These criteria are based on the kinetics of patients who experienced moderate to severe hepatotoxicity (Common Terminology Criteria for Adverse Events grades 2-4). We applied these criteria to a retrospective cohort of 682 patients diagnosed with hepatocellular carcinoma and treated with ICI. All patients were required to have baseline laboratory measurements before and after the initiation of ICI.

RESULTS

A set of 63 equally sampled patients were reviewed by two blinded, clinical adjudicators. Disagreements were reviewed and consensus was taken to be the ground truth. Of these, 25 patients with irAEs were identified, 16 were determined to be hepatic irAEs, 36 patients were nonadverse events, and two patients were of indeterminant status. Reviewers agreed in 44 of 63 patients, including 19 patients with irAEs (0.70 concordance, Fleiss' kappa: 0.43). By comparison, the algorithm achieved a sensitivity and specificity of identifying hepatic irAEs of 0.63 and 0.81, respectively, with a test efficiency (percent correctly classified) of 0.78 and outcome-weighted F1 score of 0.74.

CONCLUSION

The algorithm achieves greater concordance with the ground truth than either individual clinical adjudicator for the detection of irAEs.

摘要

目的

我们提出并验证了一种基于规则的算法,用于在真实患者队列中检测中度至重度与肝脏相关的免疫相关不良事件(irAE)。该算法可应用于大数据库中 irAE 的研究。

方法

我们制定了一套标准来定义肝脏 irAE。这些标准包括:免疫检查点抑制剂(ICI)治疗的前 2-14 周内实验室检测值升高的时间顺序、升高的实验室检测值出现后 2 周内使用类固醇干预、以及干预时间至少 2 周。这些标准基于经历中度至重度肝毒性(不良事件通用术语标准等级 2-4)的患者的动力学。我们将这些标准应用于接受 ICI 治疗的 682 例肝细胞癌患者的回顾性队列。所有患者均需在开始 ICI 前后进行基线实验室检测。

结果

由两名盲法临床裁决者审查了一组 63 名等距采样的患者。对分歧进行了审查,并达成共识作为真实情况。其中,25 例患者被诊断为 irAE,16 例被确定为肝脏 irAE,36 例为非不良事件,2 例为不确定状态。在 63 名患者中,有 44 名患者得到了审查者的一致认可,其中包括 19 名 irAE 患者(0.70 一致性,Fleiss' kappa:0.43)。相比之下,该算法在识别肝脏 irAE 方面的敏感性和特异性分别为 0.63 和 0.81,测试效率(正确分类的百分比)为 0.78,结果加权 F1 评分为 0.74。

结论

与单个临床裁决者相比,该算法在检测 irAE 方面与真实情况的一致性更高。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6b92/11161238/528cff8ea466/cci-8-e2300159-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验