Liu Zongcheng, Han Jianping, Yang Penghui
School of Civil Engineering, Lanzhou University of Technology, Lanzhou 730050, China.
School of Materials Science and Engineering, Lanzhou University of Technology, Lanzhou 730050, China.
Materials (Basel). 2024 May 3;17(9):2141. doi: 10.3390/ma17092141.
This study investigates the potential of the plate-shaped Zn-22 wt.% Al (Zn-22Al) alloy as an innovative energy dissipation material for seismic damping devices, since plate-shaped material is more suitable to fabricate large-scale devices for building structures. The research begins with the synthesis of Zn-22Al alloy, given its unavailability in the commercial market. Monotonic tensile tests and low-cycle fatigue tests are performed to analyze material properties and fatigue performance of plate-shaped specimens. Monotonic tensile curves and cyclic stress-strain curves, along with SEM micrographs for microstructure and fracture surface analysis, are acquired. The combined cyclic hardening material model is calibrated to facilitate finite element analysis. Experimental results reveal exceptional ductility in Zn-22Al alloy, achieving a fracture strain of 200.37% (1.11 fracture strain). Fatigue life ranges from 1126 to 189 cycles with increasing strain amplitude (±0.8% to ±2.5%), surpassing mild steel by at least 6 times. The cyclic strain-life relationships align well with the Basquin-Coffin-Manson relationship. The combined kinematic/isotropic hardening model in ABAQUS accurately predicts the hysteretic behavior of the material, showcasing the promising potential of Zn-22Al alloy for seismic damping applications.
本研究探讨了板状Zn-22 wt.% Al(Zn-22Al)合金作为地震阻尼装置创新耗能材料的潜力,因为板状材料更适合制造用于建筑结构的大型装置。鉴于Zn-22Al合金在商业市场上无法获得,研究从其合成开始。进行单调拉伸试验和低周疲劳试验,以分析板状试样的材料性能和疲劳性能。获取了单调拉伸曲线和循环应力-应变曲线,以及用于微观结构和断口分析的扫描电子显微镜图像。校准了组合循环强化材料模型,以方便进行有限元分析。实验结果表明,Zn-22Al合金具有出色的延展性,断裂应变达到200.37%(1.11倍断裂应变)。随着应变幅值增加(±0.8%至±2.5%),疲劳寿命在1126至189次循环之间,比低碳钢至少高出6倍。循环应变-寿命关系与巴斯奎因-科芬-曼森关系吻合良好。ABAQUS中的组合运动/各向同性强化模型准确预测了材料的滞回行为,展示了Zn-22Al合金在地震阻尼应用中的广阔前景。