Zhang Run, Zhang Hongping, Chen Meng, Liu Laibao, Tan Hongbin, Tang Youhong
School of Materials and Chemistry, Southwest University of Science and Technology, Mianyang 621010, China.
School of Mechanical Engineering, Institute for Advanced Study, Chengdu University, Chengdu 610100, China.
Materials (Basel). 2024 May 4;17(9):2151. doi: 10.3390/ma17092151.
In order to address the issues of energy depletion, more resources are being searched for in the deep sea. Therefore, research into how the deep-sea environment affects cement-based materials for underwater infrastructure is required. This paper examines the impact of ocean depth (0, 500, 1000, and 1500 m) on the ion interaction processes in concrete nanopores using molecular dynamics simulations. At the portlandite interface, the local structural and kinetic characteristics of ions and water molecules are examined. The findings show that the portlandite surface hydrophilicity is unaffected by increasing depth. The density profile and coordination number of ions alter as depth increases, and the diffusion speed noticeably decreases. The main cause of the ions' reduced diffusion velocity is expected to be the low temperature. This work offers a thorough understanding of the cement hydration products' microstructure in deep sea, which may help explain why cement-based underwater infrastructure deteriorates over time.
为了解决能源枯竭问题,人们正在深海中寻找更多资源。因此,需要研究深海环境如何影响水下基础设施用水泥基材料。本文采用分子动力学模拟研究了海洋深度(0、500、1000和1500米)对混凝土纳米孔中离子相互作用过程的影响。在氢氧化钙界面,研究了离子和水分子的局部结构和动力学特征。研究结果表明,氢氧化钙表面亲水性不受深度增加的影响。随着深度增加,离子的密度分布和配位数发生变化,扩散速度明显降低。预计离子扩散速度降低的主要原因是温度较低。这项工作全面了解了深海中水泥水化产物的微观结构,这可能有助于解释为什么水泥基水下基础设施会随着时间推移而恶化。