Suppr超能文献

偶氮染料刚果红在废水中的吸附行为:梯度提升机学习辅助贝叶斯优化用于改进吸附过程。

Sorption Behavior of Azo Dye Congo Red onto Activated Biochar from Waste: Gradient Boosting Machine Learning-Assisted Bayesian Optimization for Improved Adsorption Process.

机构信息

Facultad de Ingeniería, Universidad Autónoma del Carmen, Ciudad del Carmen 24115, Campeche, Mexico.

Institute of Chemistry, Federal University of Rio Grande do Sul (UFRGS), Av. Bento Goncalves 9500, P.O. Box 15003, Porto Alegre 91501-970, RS, Brazil.

出版信息

Int J Mol Sci. 2024 Apr 27;25(9):4771. doi: 10.3390/ijms25094771.

Abstract

This work aimed to describe the adsorption behavior of Congo red (CR) onto activated biochar material prepared from waste (). The carbon precursor was soaked with phosphoric acid, followed by pyrolysis to convert the precursor into activated biochar. The surface morphology of the adsorbent (before and after dye adsorption) was characterized by scanning electron microscopy (SEM/EDS), BET method, X-ray powder diffraction (XRD), and Fourier-transform infrared spectroscopy (FTIR) and, lastly, pH was also determined. Batch studies were carried out in the following intervals of pH = 4-10, temperature = 300.15-330.15 K, the dose of adsorbent = 1-10 g/L, and isotherms evaluated the adsorption process to determine the maximum adsorption capacity (Q, mg/g). Kinetic studies were performed starting from two different initial concentrations (25 and 50 mg/L) and at a maximum contact time of 48 h. The reusability potential of activated biochar was evaluated by adsorption-desorption cycles. The maximum adsorption capacity obtained with the Langmuir adsorption isotherm model was 114.8 mg/g at 300.15 K, pH = 5.4, and a dose of activated biochar of 1.0 g/L. This study also highlights the application of advanced machine learning techniques to optimize a chemical removal process. Leveraging a comprehensive dataset, a Gradient Boosting regression model was developed and fine-tuned using Bayesian optimization within a Python programming environment. The optimization algorithm efficiently navigated the input space to maximize the removal percentage, resulting in a predicted efficiency of approximately 90.47% under optimal conditions. These findings offer promising insights for enhancing efficiency in similar removal processes, showcasing the potential of machine learning in process optimization and environmental remediation.

摘要

这项工作旨在描述刚果红(CR)在由废物()制备的活性生物炭材料上的吸附行为。碳前体用磷酸浸泡,然后进行热解,将前体转化为活性生物炭。吸附剂(吸附前后)的表面形态通过扫描电子显微镜(SEM/EDS)、BET 法、X 射线粉末衍射(XRD)和傅里叶变换红外光谱(FTIR)进行了表征,最后还测定了 pH 值。在 pH = 4-10、温度 = 300.15-330.15 K、吸附剂用量 = 1-10 g/L 的条件下进行批量研究,并用等温线评估吸附过程,以确定最大吸附容量(Q,mg/g)。从两个不同的初始浓度(25 和 50 mg/L)开始进行动力学研究,并在最大接触时间为 48 h 的条件下进行。通过吸附-解吸循环评估了活性生物炭的再利用潜力。在 300.15 K、pH = 5.4 和 1.0 g/L 的活性生物炭用量下,Langmuir 吸附等温线模型得到的最大吸附容量为 114.8 mg/g。本研究还强调了应用先进的机器学习技术来优化化学去除过程。利用一个全面的数据集,在 Python 编程环境中使用贝叶斯优化开发了一个梯度提升回归模型,并对其进行了微调。优化算法有效地在输入空间中进行导航,以最大化去除率,在最佳条件下,预测效率约为 90.47%。这些发现为提高类似去除过程的效率提供了有前景的见解,展示了机器学习在过程优化和环境修复中的潜力。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ad49/11083778/d0d2b1a3bddc/ijms-25-04771-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验