Suppr超能文献

一种利用交叉检查过滤器的车载网络入侵检测系统的新型架构。

A Novel Architecture for an Intrusion Detection System Utilizing Cross-Check Filters for In-Vehicle Networks.

作者信息

Im Hyungchul, Lee Donghyeon, Lee Seongsoo

机构信息

Department of Intelligent Semiconductors, Soongsil University, Seoul 06978, Republic of Korea.

出版信息

Sensors (Basel). 2024 Apr 28;24(9):2807. doi: 10.3390/s24092807.

Abstract

The Controller Area Network (CAN), widely used for vehicular communication, is vulnerable to multiple types of cyber-threats. Attackers can inject malicious messages into the CAN bus through various channels, including wireless methods, entertainment systems, and on-board diagnostic ports. Therefore, it is crucial to develop a reliable intrusion detection system (IDS) capable of effectively distinguishing between legitimate and malicious CAN messages. In this paper, we propose a novel IDS architecture aimed at enhancing the cybersecurity of CAN bus systems in vehicles. Various machine learning (ML) models have been widely used to address similar problems; however, although existing ML-based IDS are computationally efficient, they suffer from suboptimal detection performance. To mitigate this shortcoming, our architecture incorporates specially designed rule-based filters that cross-check outputs from the traditional ML-based IDS. These filters scrutinize message ID and payload data to precisely capture the unique characteristics of three distinct types of cyberattacks: DoS attacks, spoofing attacks, and fuzzy attacks. Experimental evidence demonstrates that the proposed architecture leads to a significant improvement in detection performance across all utilized ML models. Specifically, all ML-based IDS achieved an accuracy exceeding 99% for every type of attack. This achievement highlights the robustness and effectiveness of our proposed solution in detecting potential threats.

摘要

控制器局域网(CAN)广泛应用于车辆通信,容易受到多种网络威胁。攻击者可以通过各种渠道,包括无线方式、娱乐系统和车载诊断端口,向CAN总线注入恶意消息。因此,开发一种能够有效区分合法和恶意CAN消息的可靠入侵检测系统(IDS)至关重要。在本文中,我们提出了一种新颖的IDS架构,旨在增强车辆CAN总线系统的网络安全性。各种机器学习(ML)模型已被广泛用于解决类似问题;然而,尽管现有的基于ML的IDS计算效率高,但它们的检测性能欠佳。为了缓解这一缺点,我们的架构纳入了专门设计的基于规则的过滤器,对传统基于ML的IDS的输出进行交叉检查。这些过滤器仔细检查消息ID和有效载荷数据,以精确捕捉三种不同类型网络攻击的独特特征:拒绝服务(DoS)攻击、欺骗攻击和模糊攻击。实验证据表明,所提出的架构使所有使用的ML模型的检测性能都有显著提高。具体而言,所有基于ML的IDS对每种类型的攻击都实现了超过99%的准确率。这一成果突出了我们提出的解决方案在检测潜在威胁方面的稳健性和有效性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9633/11086323/c7b5feafa954/sensors-24-02807-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验