Suppr超能文献

基于图像超分辨率的浅海水下声通信中正交啁啾频分复用信道估计

Image Super Resolution-Based Channel Estimation for Orthogonal Chirp Division Multiplexing on Shallow Water Underwater Acoustic Communications.

作者信息

Liu Haoyang, He Chuanlin, Yu Yanting, Bai Yiqi, Han Yufei

机构信息

School of Ocean Technology Sciences, Qilu University of Technology (Shandong Academy of Science), Qingdao 266100, China.

School of Ocean Engineering, Harbin Institute of Technology (Weihai), Weihai 264209, China.

出版信息

Sensors (Basel). 2024 Apr 29;24(9):2846. doi: 10.3390/s24092846.

Abstract

Orthogonal chirp division multiplexing (OCDM) offers a promising modulation technology for shallow water underwater acoustic (UWA) communication systems due to multipath fading resistance and Doppler resistance. To handle the various channel distortions and interferences, obtaining accurate channel state information is vital for robust and efficient shallow water UWA communication. In recent years, deep learning has attracted widespread attention in the communication field, providing a new way to improve the performance of physical layer communication systems. In this paper, the pilot-based channel estimation is transformed into a matrix completion problem, which is mathematically equivalent to the image super-resolution problem arising in the field of image processing. Simulation results show that the deep learning-based method can improve the channel distortion, outperforming the equalization performed by traditional estimator, the performance of Bit Error Rate is improved by 2.5 dB compared to the MMSE method in OCDM system. At the 7.5 to 20 dB region, it achieves better bit error rate performance than OFDM systems, and the bit error rate is reduced by approximately 53% compared to OFDM when the SNR value is 20, which is very useful in shallow water UWA channels with multipath extension and severe time-varying characteristics.

摘要

正交线性调频分割复用(OCDM)由于具有抗多径衰落和抗多普勒特性,为浅海水下声学(UWA)通信系统提供了一种很有前景的调制技术。为了应对各种信道失真和干扰,获取准确的信道状态信息对于稳健且高效的浅海UWA通信至关重要。近年来,深度学习在通信领域引起了广泛关注,为提高物理层通信系统的性能提供了一种新途径。在本文中,基于导频的信道估计被转化为一个矩阵补全问题,这在数学上等同于图像处理领域中出现的图像超分辨率问题。仿真结果表明,基于深度学习的方法能够改善信道失真,优于传统估计器执行的均衡,在OCDM系统中,与最小均方误差(MMSE)方法相比,误码率性能提高了2.5 dB。在7.5至20 dB区域,它实现了比正交频分复用(OFDM)系统更好的误码率性能,当信噪比(SNR)值为20时,与OFDM相比,误码率降低了约53%,这在具有多径扩展和严重时变特性的浅海UWA信道中非常有用。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1f85/11086094/810b1b702b23/sensors-24-02846-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验