Suppr超能文献

将深度学习神经网络、基于规则的专家系统和针对目标的手动编码相结合,对 2018 年至 2019 年法国死亡证明的 ICD-10 死亡原因进行编码。

Combining deep neural networks, a rule-based expert system and targeted manual coding for ICD-10 coding causes of death of French death certificates from 2018 to 2019.

机构信息

CépiDc-Inserm, Centre d'épidémiologie sur les causes médicales de décès, Inserm, 46 rue Albert 75013 Paris, France.

DREES: Direction de la recherche, des études, de l'évaluation et des statistiques, 78 rue Olivier de Serres, 75015 Paris, France.

出版信息

Int J Med Inform. 2024 Aug;188:105462. doi: 10.1016/j.ijmedinf.2024.105462. Epub 2024 Apr 26.

Abstract

OBJECTIVE

For ICD-10 coding causes of death in France in 2018 and 2019, predictions by deep neural networks (DNNs) are employed in addition to fully automatic batch coding by a rule-based expert system and to interactive coding by the coding team focused on certificates with a special public health interest and those for which DNNs have a low confidence index.

METHODS

Supervised seq-to-seq DNNs are trained on previously coded data to ICD-10 code multiple causes and underlying causes of death. The DNNs are then used to target death certificates to be sent to the coding team and to predict multiple causes and underlying causes of death for part of the certificates. Hence, the coding campaign for 2018 and 2019 combines three modes of coding and a loop of interaction between the three.

FINDINGS

In this campaign, 62% of the certificates are automatically batch coded by the expert system, 3% by the coding team, and the remainder by DNNs. Compared to a traditional campaign that would have relied on automatic batch coding and manual coding, the present campaign reaches an accuracy of 93.4% for ICD-10 coding of the underlying cause (95.6% at the European shortlist level). Some limitations (risks of under- or overestimation) appear for certain ICD categories, with the advantage of being quantifiable.

CONCLUSION

The combination of the three coding methods illustrates how artificial intelligence, automated and human codings are mutually enriching. Quantified limitations on some chapters of ICD codes encourage an increase in the volume of certificates sent for manual coding from 2021 onward.

摘要

目的

对于 2018 年和 2019 年法国的 ICD-10 死因编码,除了基于规则的专家系统的全自动批量编码和专注于具有特殊公共卫生利益和 DNN 置信度低的证书的编码团队的交互编码之外,还使用深度神经网络(DNN)进行预测。

方法

监督的 seq-to-seq DNN 针对 ICD-10 编码多个死因和根本死因对先前编码的数据进行训练。然后,使用 DNN 对要发送给编码团队的死亡证明进行目标定位,并预测部分证书的多个死因和根本死因。因此,2018 年和 2019 年的编码活动结合了三种编码模式,并在三种模式之间进行了循环交互。

发现

在本次活动中,62%的证书由专家系统自动批量编码,3%由编码团队编码,其余由 DNN 编码。与依赖于自动批量编码和手动编码的传统活动相比,本次活动达到了 93.4%的 ICD-10 根本死因编码准确率(欧洲短名单水平为 95.6%)。对于某些 ICD 类别,存在一些限制(低估或高估的风险),但具有可量化的优势。

结论

三种编码方法的结合说明了人工智能、自动化和人工编码是如何相互丰富的。对 ICD 编码某些章节的量化限制鼓励从 2021 年起增加手动编码的证书数量。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验