Laboratório de Genômica Evolutiva, Departamento de Genética, Evolução, Microbiologia e Imunologia, Instituto de Biologia, Universidade Estadual de Campinas, Campinas, Brazil.
Department of Biology, Dalhousie University, Halifax, NS, Canada.
J Mol Evol. 2024 Jun;92(3):300-316. doi: 10.1007/s00239-024-10170-3. Epub 2024 May 12.
Cetaceans and pinnipeds are lineages of mammals that have independently returned to the aquatic environment, acquiring varying degrees of dependence on it while sharing adaptations for underwater living. Here, we focused on one critical adaptation from both groups, their ability to withstand the ischemia and reperfusion experienced during apnea diving, which can lead to the production of reactive oxygen species (ROS) and subsequent oxidative damage. Previous studies have shown that cetaceans and pinnipeds possess efficient antioxidant enzymes that protect against ROS. In this study, we investigated the molecular evolution of key antioxidant enzyme genes (CAT, GPX3, GSR, PRDX1, PRDX3, and SOD1) and the ROS-producing gene XDH, in cetaceans and pinnipeds lineages. We used the ratio of non-synonymous (dN) to synonymous (dS) substitutions as a measure to identify signatures of adaptive molecular evolution in these genes within and between the two lineages. Additionally, we performed protein modeling and variant impact analyzes to assess the functional consequences of observed mutations. Our findings revealed distinct selective regimes between aquatic and terrestrial mammals in five of the examined genes, including divergences within cetacean and pinniped lineages, between ancestral and recent lineages and between crowns groups. We identified specific sites under positive selection unique to Cetacea and Pinnipedia, with one site showing evidence of convergent evolution in species known for their long and deep-diving capacities. Notably, many sites under adaptive selection exhibited radical changes in amino acid properties, with some being damaging mutations in human variations, but with no apparent detrimental impacts on aquatic mammals. In conclusion, our study provides insights into the adaptive changes that have occurred in the antioxidant systems of aquatic mammals throughout their evolutionary history. We observed both distinctive features within each group of Cetacea and Pinnipedia and instances of convergence. These findings highlight the dynamic nature of the antioxidant system in response to challenges of the aquatic environment and provide a foundation for further investigations into the molecular mechanisms underlying these adaptations.
鲸类和鳍足类是哺乳动物的两个谱系,它们已经独立地返回水生环境,在适应水下生活的同时,对水生环境的依赖程度也各不相同。在这里,我们关注的是这两个群体共有的一个关键适应特征,即它们能够承受在潜水呼吸暂停期间经历的缺血再灌注,这可能导致活性氧(ROS)的产生和随后的氧化损伤。以前的研究表明,鲸类和鳍足类动物拥有有效的抗氧化酶,可以抵御 ROS。在这项研究中,我们研究了关键抗氧化酶基因(CAT、GPX3、GSR、PRDX1、PRDX3 和 SOD1)和 ROS 产生基因 XDH 在鲸类和鳍足类谱系中的分子进化。我们使用非同义(dN)与同义(dS)取代率的比值作为衡量这些基因在两个谱系内和之间适应分子进化的特征。此外,我们进行了蛋白质建模和变体影响分析,以评估观察到的突变的功能后果。我们的研究结果表明,在五个被研究的基因中,水生和陆生哺乳动物之间存在明显不同的选择模式,包括鲸类和鳍足类内部的分歧、祖先进化支和近期进化支之间以及冠群之间的分歧。我们确定了特定的正选择位点,这些位点是鲸类和鳍足类所特有的,其中一个位点在那些以长距离和深潜能力而闻名的物种中显示出趋同进化的证据。值得注意的是,许多适应选择的位点表现出氨基酸性质的剧烈变化,其中一些在人类变异中是有害突变,但对水生哺乳动物没有明显的不利影响。总之,我们的研究提供了关于水生哺乳动物在其进化历史中抗氧化系统发生适应性变化的见解。我们观察到每个鲸类和鳍足类群体内部的独特特征以及趋同进化的实例。这些发现强调了抗氧化系统对水生环境挑战的动态性质,并为进一步研究这些适应的分子机制提供了基础。