Suppr超能文献

在受控氧条件下使用多光谱成像技术可视化内皮细胞中的过氧化氢和一氧化氮动态。

Visualizing hydrogen peroxide and nitric oxide dynamics in endothelial cells using multispectral imaging under controlled oxygen conditions.

机构信息

Research Institute for Health Sciences and Technologies (SABITA), Istanbul Medipol University, 34810, Istanbul, Turkey; Molecular Biology, Genetics, and Bioengineering Program, Sabanci University, 34956, Istanbul, Turkey.

King's British Heart Foundation Centre of Research Excellence, School of Cardiovascular and Metabolic Medicine & Sciences, Faculty of Life Sciences & Medicine, King's College London, 150 Stamford Street, London, SE1 9NH, UK.

出版信息

Free Radic Biol Med. 2024 Aug 20;221:89-97. doi: 10.1016/j.freeradbiomed.2024.05.021. Epub 2024 May 11.

Abstract

The complex interplay between hydrogen peroxide (HO) and nitric oxide (NO) in endothelial cells presents challenges due to technical limitations in simultaneous measurement, hindering the elucidation of their direct relationship. Previous studies have yielded conflicting findings regarding the impact of HO on NO production. To address this problem, we employed genetically encoded biosensors, HyPer7 for HO and geNOps for NO, allowing simultaneous imaging in single endothelial cells. Optimization strategies were implemented to enhance biosensor performance, including camera binning, temperature regulation, and environmental adjustments to mimic physiological normoxia. Our results demonstrate that under ambient oxygen conditions, HO exhibited no significant influence on NO production. Subsequent exploration under physiological normoxia (5 kPa O) revealed distinct oxidative stress levels characterized by reduced basal HyPer7 signals, enhanced HO scavenging kinetics, and altered responses to pharmacological treatment. Investigation of the relationship between HO and NO under varying oxygen conditions revealed a lack of NO response to HO under hyperoxia (18 kPa O) but a modest NO response under physiological normoxia (5 kPa O). Importantly, the NO response was attenuated by l-NAME, suggesting activation of eNOS by endogenous HO generation upon auranofin treatment. Our study highlights the intricate interplay between HO and NO within the endothelial EA.hy926 cell line, emphasizing the necessity for additional research within physiological contexts due to differential response observed under physiological normoxia (5 kPa O). This further investigation is essential for a comprehensive understanding of the HO and NO signaling considering the physiological effects of ambient O levels involved.

摘要

过氧化氢 (HO) 和一氧化氮 (NO) 在血管内皮细胞中的复杂相互作用由于同时测量的技术限制而带来挑战,这阻碍了对它们直接关系的阐明。先前的研究对于 HO 对 NO 产生的影响得出了相互矛盾的发现。为了解决这个问题,我们使用了遗传编码的生物传感器,HyPer7 用于 HO 和 geNOps 用于 NO,允许在单个内皮细胞中进行同时成像。实施了优化策略来增强生物传感器的性能,包括相机 binning、温度调节和环境调整以模拟生理常氧条件。我们的结果表明,在环境氧条件下,HO 对 NO 产生没有显著影响。随后在生理常氧 (5 kPa O) 下进行探索显示出不同的氧化应激水平,其特征是基础 HyPer7 信号减少、增强的 HO 清除动力学以及对药物治疗的反应改变。在不同氧条件下研究 HO 和 NO 之间的关系表明,在高氧 (18 kPa O) 下 NO 对 HO 没有反应,但在生理常氧 (5 kPa O) 下有适度的 NO 反应。重要的是,NO 反应被 l-NAME 减弱,表明在金诺芬处理时,内源性 HO 产生激活了 eNOS。我们的研究强调了 HO 和 NO 在内皮 EA.hy926 细胞系中的复杂相互作用,强调了在生理常氧 (5 kPa O) 下观察到的不同反应需要在生理背景下进行进一步研究。考虑到所涉及的环境氧水平的生理效应,这进一步的研究对于全面理解 HO 和 NO 信号至关重要。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验