Academy of Pediatrics, University of South China, Changsha, China.
Hunan Provincial Key Laboratory of Emergency Medicine for Children, Hunan Children's Hospital, Changsha, China.
Ann Hematol. 2024 Aug;103(8):2699-2709. doi: 10.1007/s00277-024-05780-2. Epub 2024 May 13.
There has been no severity evaluation model for pediatric patients with hemophagocytic lymphohistiocytosis (HLH) that uses readily available parameters. This study aimed to develop a novel model for predicting the early mortality risk in pediatric patients with HLH using easily obtained parameters whatever etiologic subtype. Patients from one center were divided into training and validation sets for model derivation. The developed model was validated using an independent validation cohort from the second center. The prediction model with nomogram was developed based on logistic regression. The model performance underwent internal and external evaluation and validation using the area under the receiver operating characteristic curve (AUC), calibration curve with 1000 bootstrap resampling, and decision curve analysis (DCA). Model performance was compared with the most prevalent severity evaluation scores, including the PELOD-2, P-MODS, and pSOFA scores. The prediction model included nine variables: glutamic-pyruvic transaminase, albumin, globulin, myohemoglobin, creatine kinase, serum potassium, procalcitonin, serum ferritin, and interval between onset and diagnosis. The AUC of the model for predicting the 28-day mortality was 0.933 and 0.932 in the training and validation sets, respectively. The AUC values of the HScore, PELOD-2, P-MODS and pSOFA were 0.815, 0.745, 0.659 and 0.788, respectively. The DCA of the 28-day mortality prediction exhibited a greater net benefit than the HScore, PELOD-2, P-MODS and pSOFA. Subgroup analyses demonstrated good model performance across HLH subtypes. The novel mortality prediction model in this study can contribute to the rapid assessment of early mortality risk after diagnosis with readily available parameters.
目前尚无使用易于获得的参数评估噬血细胞性淋巴组织细胞增生症(HLH)儿科患者严重程度的评估模型。本研究旨在开发一种新的模型,用于预测儿科 HLH 患者的早期死亡风险,无论病因亚型如何,均使用易于获得的参数。一个中心的患者被分为训练集和验证集以进行模型推导。使用来自第二个中心的独立验证队列验证开发的模型。基于逻辑回归开发预测模型和列线图。使用接受者操作特征曲线(AUC)下面积、1000 次 bootstrap 重采样的校准曲线和决策曲线分析(DCA)对内、外部评估和验证模型性能。使用最常见的严重程度评估评分(包括 PELOD-2、P-MODS 和 pSOFA 评分)比较模型性能。预测模型包括九个变量:谷氨酸-丙酮酸转氨酶、白蛋白、球蛋白、肌红蛋白、肌酸激酶、血清钾、降钙素原、血清铁蛋白和发病至诊断的时间间隔。模型预测 28 天死亡率的 AUC 在训练集和验证集中分别为 0.933 和 0.932。HScore、PELOD-2、P-MODS 和 pSOFA 的 AUC 值分别为 0.815、0.745、0.659 和 0.788。28 天死亡率预测的 DCA 显示出比 HScore、PELOD-2、P-MODS 和 pSOFA 更大的净收益。亚组分析表明,该模型在所有 HLH 亚型中均具有良好的性能。本研究中的新型死亡率预测模型可以帮助快速评估诊断后早期死亡风险,且使用的参数易于获得。