Suppr超能文献

2011 - 2015年中国免疫接种后不良事件中统计信号检测方法的比较

Comparison of Statistical Signal Detection Methods in Adverse Events Following Immunization - China, 2011-2015.

作者信息

Xia Lanfang, Li Keli, Li Yan, An Zhijie, Song Quanwei, Wang Lei, Yin Zundong, Wang Huaqing

机构信息

National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases (NITFID), Beijing, China.

National Immunization Program, Chinese Center for Disease Control and Prevention, Beijing, China.

出版信息

China CDC Wkly. 2024 Apr 19;6(16):350-356. doi: 10.46234/ccdcw2024.066.

Abstract

INTRODUCTION

The current study aims to assess the performance of data mining techniques in detecting safety signals for adverse events following immunization (AEFI) using routinely obtained data in China. Four different methods for detecting vaccine safety signals were evaluated.

METHODS

The AEFI data from 2011 to 2015 was collected for our study. We analyzed the data using four different methods to detect signals: the proportional reporting ratio (PRR), reporting odds ratio (ROR), Bayesian confidence propagation neural network (BCPNN), and multi-item gamma Poisson shrinker (MGPS). Each method was evaluated at 1-3 thresholds for positivity. To assess the performance of these methods, we used the published signal rates as gold standards to determine the sensitivity and specificity.

RESULTS

The number of identified signals varied from 602 for PRR1 (with a threshold of 1) to 127 for MGPS1. When considering the common reactions as the reference standard, the sensitivity ranged from 0.9% for MGPS1/2 to 38.2% for PRR1/2, and the specificity ranged from 85.2% for PRR1 and ROR1 to 96.7% for MGPS1. When considering the rare reactions as the reference standard, PRR1, PRR2, ROR1, ROR2, and BCPNN exhibited the highest sensitivity (73.3%), while MGPS1 exhibited the highest specificity (96.9%).

DISCUSSION

For common reactions, the sensitivities were modest and the specificities were high. For rare reactions, both the sensitivities and specificities were high. Our study provides valuable insights into the selection of signal detection methods and thresholds for AEFI data in China.

摘要

引言

本研究旨在评估数据挖掘技术在中国利用常规获取的数据检测疫苗接种后不良事件(AEFI)安全信号方面的性能。对四种不同的疫苗安全信号检测方法进行了评估。

方法

收集2011年至2015年的AEFI数据用于本研究。我们使用四种不同方法分析数据以检测信号:比例报告率(PRR)、报告比值比(ROR)、贝叶斯置信传播神经网络(BCPNN)和多项目伽马泊松收缩器(MGPS)。每种方法在1至3个阳性阈值下进行评估。为评估这些方法的性能,我们将已公布的信号率作为金标准来确定敏感性和特异性。

结果

识别出的信号数量从PRR1(阈值为1)的602个到MGPS1的127个不等。当将常见反应作为参考标准时,敏感性范围从MGPS1/2的0.9%到PRR1/2的38.2%,特异性范围从PRR1和ROR1的85.2%到MGPS1的96.7%。当将罕见反应作为参考标准时,PRR1、PRR2、ROR1、ROR2和BCPNN表现出最高敏感性(73.3%),而MGPS1表现出最高特异性(96.9%)。

讨论

对于常见反应,敏感性适中而特异性较高。对于罕见反应,敏感性和特异性都较高。我们的研究为中国AEFI数据信号检测方法和阈值的选择提供了有价值的见解。

相似文献

4
Data mining spontaneous adverse drug event reports for safety signals in Singapore - a comparison of three different disproportionality measures.
Expert Opin Drug Saf. 2016 May;15(5):583-90. doi: 10.1517/14740338.2016.1167184. Epub 2016 Apr 7.
5
Liver injury due to endothelin receptor antagonists: a real-world study based on post-marketing drug monitoring data.
Ther Adv Respir Dis. 2024 Jan-Dec;18:17534666231223606. doi: 10.1177/17534666231223606.
7
Surveillance on the adverse events following immunization with the pentavalent vaccine in Zhejiang, China.
Hum Vaccin Immunother. 2022 Dec 31;18(1):2021711. doi: 10.1080/21645515.2021.2021711. Epub 2022 Feb 2.
8
Safety related drug-labelling changes: findings from two data mining algorithms.
Drug Saf. 2004;27(10):735-44. doi: 10.2165/00002018-200427100-00004.
10
Post-marketing safety concerns with elagolix: a disproportionality analysis of the FDA adverse event reporting system.
Expert Opin Drug Saf. 2024 Dec;23(12):1545-1552. doi: 10.1080/14740338.2024.2351451. Epub 2024 May 7.

引用本文的文献

本文引用的文献

1
Commentary: Sensitivity, Specificity, and Predictive Values: Foundations, Pliabilities, and Pitfalls in Research and Practice.
Front Public Health. 2018 Sep 28;6:256. doi: 10.3389/fpubh.2018.00256. eCollection 2018.
4
Comparison of data mining methodologies using Japanese spontaneous reports.
Pharmacoepidemiol Drug Saf. 2004 Jun;13(6):387-94. doi: 10.1002/pds.964.
7
9
The medical dictionary for regulatory activities (MedDRA).
Drug Saf. 1999 Feb;20(2):109-17. doi: 10.2165/00002018-199920020-00002.
10
A Bayesian neural network method for adverse drug reaction signal generation.
Eur J Clin Pharmacol. 1998 Jun;54(4):315-21. doi: 10.1007/s002280050466.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验