Niu M T, Erwin D E, Braun M M
Vaccine Safety Branch, Division of Epidemiology, Office of Biostatistics and Epidemiology, Center for Biologic Evaluation and Research, US Food and Drug Administration, 1401 Rockville Pike, HFM-210, Rockville, MD 20852-1448, USA.
Vaccine. 2001 Sep 14;19(32):4627-34. doi: 10.1016/s0264-410x(01)00237-7.
The Vaccine Adverse Event Reporting System (VAERS) is the US passive surveillance system monitoring vaccine safety. A major limitation of VAERS is the lack of denominator data (number of doses of administered vaccine), an element necessary for calculating reporting rates. Empirical Bayesian data mining, a data analysis method, utilizes the number of events reported for each vaccine and statistically screens the database for higher than expected vaccine-event combinations signaling a potential vaccine-associated event. This is the first study of data mining in VAERS designed to test the utility of this method to detect retrospectively a known side effect of vaccination-intussusception following rotavirus (RV) vaccine. From October 1998 to December 1999, 112 cases of intussusception were reported. The data mining method was able to detect a signal for RV-intussusception in February 1999 when only four cases were reported. These results demonstrate the utility of data mining to detect significant vaccine-associated events at early date. Data mining appears to be an efficient and effective computer-based program that may enhance early detection of adverse events in passive surveillance systems.
疫苗不良事件报告系统(VAERS)是美国监测疫苗安全性的被动监测系统。VAERS的一个主要局限性是缺乏分母数据(接种疫苗的剂量数),而这是计算报告率所必需的要素。经验贝叶斯数据挖掘作为一种数据分析方法,利用每种疫苗报告的事件数量,并对数据库进行统计筛选,以找出高于预期的疫苗-事件组合,这些组合表明可能存在与疫苗相关的事件。这是VAERS中首次进行的数据挖掘研究,旨在测试该方法追溯检测轮状病毒(RV)疫苗接种后已知副作用——肠套叠的效用。1998年10月至1999年12月,共报告了112例肠套叠病例。数据挖掘方法在1999年2月仅报告了4例病例时就能够检测到RV-肠套叠信号。这些结果证明了数据挖掘在早期检测重要的疫苗相关事件方面的效用。数据挖掘似乎是一个高效且有效的基于计算机的程序,可能会加强被动监测系统中不良事件的早期检测。