Bhandare Amol M, Dale Nicholas, Huckstepp Robert T R
School of Life Sciences, University of Warwick, Coventry, UK.
Bio Protoc. 2024 Apr 20;14(8):e4973. doi: 10.21769/BioProtoc.4973.
In vivo brain imaging, using a combination of genetically encoded Ca indicators and gradient refractive index (GRIN) lens, is a transformative technology that has become an increasingly potent research tool over the last decade. It allows direct visualisation of the dynamic cellular activity of deep brain neurons and glia in conscious animals and avoids the effect of anaesthesia on the network. This technique provides a step change in brain imaging where fibre photometry combines the whole ensemble of cellular activity, and multiphoton microscopy is limited to imaging superficial brain structures either under anaesthesia or in head-restrained conditions. We have refined the intravital imaging technique to image deep brain nuclei in the ventral medulla oblongata, one of the most difficult brain structures to image due to the movement of brainstem structures outside the cranial cavity during free behaviour (head and neck movement), whose targeting requires GRIN lens insertion through the cerebellum-a key structure for balance and movement. Our protocol refines the implantation method of GRIN lenses, giving the best possible approach to image deep extracranial brainstem structures in awake rodents with improved cell rejection/acceptance criteria during analysis. We have recently reported this method for imaging the activity of retrotrapezoid nucleus and raphe neurons to outline their chemosensitive characteristics. This revised method paves the way to image challenging brainstem structures to investigate their role in complex behaviours such as breathing, circulation, sleep, digestion, and swallowing, and could be extended to image and study the role of cerebellum in balance, movement, motor learning, and beyond. Key features • We developed a protocol that allows imaging from brainstem neurons and glia in freely behaving rodents. • Our refined method of GRIN lenses implantation and cell sorting approach gives the highest number of cells with the least postoperative complications. • The revised deep brainstem imaging method paves way to understand complex behaviours such as cardiorespiratory regulation, sleep, swallowing, and digestion. • Our protocol can be implemented to image cerebellar structures to understand their role in key functions such as balance, movement, motor learning, and more.
利用基因编码钙指示剂和梯度折射率(GRIN)透镜相结合的体内脑成像技术,是一项变革性技术,在过去十年中已成为一种越来越强大的研究工具。它能够直接观察清醒动物深部脑神经元和神经胶质细胞的动态细胞活动,避免了麻醉对神经网络的影响。在脑成像方面,这项技术带来了巨大飞跃,因为纤维光度法能整合细胞活动的整体情况,而多光子显微镜仅限于在麻醉状态下或头部固定条件下对脑浅表结构进行成像。我们改进了活体成像技术,用于对延髓腹侧的深部脑核进行成像,延髓是最难成像的脑结构之一,因为在自由行为(头部和颈部运动)期间,脑干结构在颅腔外会移动,其靶向需要通过小脑插入GRIN透镜,而小脑是平衡和运动的关键结构。我们的方案改进了GRIN透镜的植入方法,为在清醒啮齿动物中成像深部颅外脑干结构提供了最佳途径,并在分析过程中改进了细胞排斥/接受标准。我们最近报道了这种用于成像后包钦格复合体和中缝神经元活动以勾勒其化学敏感特征的方法。这种改进后的方法为成像具有挑战性的脑干结构以研究它们在呼吸、循环、睡眠、消化和吞咽等复杂行为中的作用铺平了道路,并且可以扩展到成像和研究小脑在平衡、运动、运动学习等方面的作用。关键特性 • 我们开发了一种方案,可对自由行为的啮齿动物的脑干神经元和神经胶质细胞进行成像。 • 我们改进的GRIN透镜植入方法和细胞分选方法能以最少的术后并发症获得最多的细胞数量。 • 改进后的深部脑干成像方法为理解心肺调节、睡眠、吞咽和消化等复杂行为铺平了道路。 • 我们的方案可用于成像小脑结构,以了解它们在平衡、运动、运动学习等关键功能中的作用。