Myers Mary R, Ravipati Chakradhar, Thangam Vinoth
Radiodiagnosis, ACS Medical College and Hospital, Chennai, IND.
Radiodiagnosis, Saveetha Medical College and Hospital, Saveetha Institute of Medical and Technical Sciences (SIMATS) Saveetha University, Chennai, IND.
Cureus. 2024 Apr 10;16(4):e57959. doi: 10.7759/cureus.57959. eCollection 2024 Apr.
With rising cases of renal cell carcinoma (RCC), precise identification of tumor subtypes is essential, particularly for detecting small, heterogenous lesions often overlooked in traditional histopathological examinations. This study demonstrates the non-invasive use of deep learning for Histopathological differentiation of renal tumors through quadriphasic multidetector computed tomography (MDCT).
This prospective longitudinal study includes 50 subjects (32 males, 18 females) with suspected renal tumors. A deep neural network (DNN) is developed to predict RCC subtypes using peak attenuation values measured in Hounsfield Units (HUs) obtained from quadriphasic MDCT scans. The network then generates confidence scores for each of the four primary subtypes of renal tumors, effectively distinguishing between benign oncocytoma and various malignant subtypes.
Our neural network accurately distinguishes Renal tumor subtypes, including clear cell, papillary, chromophobe, and benign oncocytoma, with a confidence score of 68% with the network's diagnosis aligning with Histopathological examinations. Our network was also able to accurately classify RCC subtypes on a synthetically generated dataset with 20,000 samples.
We developed an artificial intelligence-based RCC subtype classification technique. Our approach is non-invasive and has the potential to transform the methodology in Renal oncology by providing accurate and timely diagnostic information and enhancing clinical decisions.
随着肾细胞癌(RCC)病例的增加,精确识别肿瘤亚型至关重要,特别是对于检测传统组织病理学检查中经常被忽视的小的、异质性病变。本研究展示了通过四期多层螺旋计算机断层扫描(MDCT)对肾肿瘤进行组织病理学分化的深度学习的非侵入性应用。
这项前瞻性纵向研究纳入了50名疑似肾肿瘤的受试者(32名男性,18名女性)。开发了一种深度神经网络(DNN),使用从四期MDCT扫描获得的以亨氏单位(HUs)测量的峰值衰减值来预测RCC亚型。然后,该网络为四种主要肾肿瘤亚型中的每一种生成置信度分数,有效区分良性嗜酸细胞瘤和各种恶性亚型。
我们的神经网络能够准确区分肾肿瘤亚型,包括透明细胞型、乳头状型、嫌色细胞型和良性嗜酸细胞瘤,网络诊断与组织病理学检查一致,置信度为68%。我们的网络还能够在一个由20,000个样本合成生成的数据集上准确分类RCC亚型。
我们开发了一种基于人工智能的RCC亚型分类技术。我们的方法是非侵入性的,有可能通过提供准确及时的诊断信息并加强临床决策来改变肾肿瘤学的方法。