Suppr超能文献

可调谐仿生材料通过冰模板和胶原蛋白的自组装用于管状组织工程。

Tunable biomimetic materials elaborated by ice templating and self-assembly of collagen for tubular tissue engineering.

机构信息

Laboratoire de Chimie de la Matière Condensée de Paris, Sorbonne Université, 4 place Jussieu, 75005 Paris, France.

LadHyX, CNRS, Ecole Polytechnique, Institut Polytechnique de Paris, Palaiseau, France.

出版信息

Biomater Sci. 2024 Jun 11;12(12):3124-3140. doi: 10.1039/d3bm01808c.

Abstract

Synthetic tubular grafts currently used in clinical context fail frequently, and the expectations that biomimetic materials could tackle these limitations are high. However, developing tubular materials presenting structural, compositional and functional properties close to those of native tissues remains an unmet challenge. Here we describe a combination of ice templating and topotactic fibrillogenesis of type I collagen, the main component of tissues' extracellular matrix, yielding highly concentrated yet porous tubular collagen materials with controlled hierarchical architecture at multiple length scales, the hallmark of native tissues' organization. By modulating the thermal conductivity of the cylindrical molds, we tune the macroscopic porosity defined by ice. Coupling the aforementioned porosity patterns with two different fibrillogenesis routes results in a new family of tubular materials whose textural features and the supramolecular arrangement of type I collagen are achieved. The resulting materials present hierarchical elastic properties and are successfully colonized by human endothelial cells and alveolar epithelial cells on the luminal side, and by human mesenchymal stem cells on the external side. The proposed straightforward protocol is likely to be adapted for larger graft sizes that address ever-growing clinical needs, such as peripheral arterial disease or tracheal and bronchial reconstructions.

摘要

目前在临床环境中使用的合成管状移植物经常失效,人们对仿生材料能够解决这些局限性寄予厚望。然而,开发出在结构、组成和功能上接近天然组织的管状材料仍然是一个尚未满足的挑战。在这里,我们描述了一种将冰模板法和 I 型胶原的拓扑原纤化相结合的方法,I 型胶原是组织细胞外基质的主要成分,生成了高度浓缩但多孔的管状胶原材料,具有多尺度控制的分级结构,这是天然组织的标志性特征。通过调节圆柱形模具的热导率,我们可以调节由冰定义的宏观孔隙率。将上述两种不同的原纤化途径结合起来,可以得到一系列新型管状材料,这些材料的结构特征和 I 型胶原的超分子排列方式都可以实现。得到的材料具有分级弹性特性,并能成功地在腔侧被人内皮细胞和肺泡上皮细胞以及外侧面的人间充质干细胞定植。所提出的简单方案很可能适用于更大的移植物尺寸,以满足日益增长的临床需求,如外周动脉疾病或气管和支气管重建。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验