Sadiek Ibrahim, Fleisher Adam J, Hayden Jakob, Huang Xinyi, Hugi Andreas, Engeln Richard, Lang Norbert, van Helden Jean-Pierre H
Leibniz Institute for Plasma Science and Technology (INP), 17489, Greifswald, Germany.
Material Measurement Laboratory, National Institute of Standards and Technology, 20899, Gaithersburg, MD, USA.
Commun Chem. 2024 May 13;7(1):110. doi: 10.1038/s42004-024-01190-7.
Plasma-activated chemical transformations promise the efficient synthesis of salient chemical products. However, the reaction pathways that lead to desirable products are often unknown, and key quantum-state-resolved information regarding the involved molecular species is lacking. Here we use quantum cascade laser dual-comb spectroscopy (QCL-DCS) to probe plasma-activated NH generation with rotational and vibrational state resolution, quantifying state-specific number densities via broadband spectral analysis. The measurements reveal unique translational, rotational and vibrational temperatures for NH products, indicative of a highly reactive, non-thermal environment. Ultimately, we postulate on the energy transfer mechanisms that explain trends in temperatures and number densities observed for NH generated in low-pressure nitrogen-hydrogen (N-H) plasmas.
等离子体激活的化学转化有望高效合成重要的化学产品。然而,通往理想产品的反应途径往往不为人知,且缺乏有关所涉及分子物种的关键量子态分辨信息。在此,我们使用量子级联激光双梳光谱(QCL-DCS)以转动和振动态分辨来探测等离子体激活产生NH的过程,通过宽带光谱分析对特定态的数密度进行量化。测量结果揭示了NH产物独特的平动、转动和振动温度,这表明存在一个高反应性的非热环境。最终,我们推测了能量转移机制,该机制解释了在低压氮氢(N-H)等离子体中产生的NH所观察到的温度和数密度趋势。