Devasia Dinumol, Das Ankita, Mohan Varun, Jain Prashant K
Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA; email:
Department of Materials Science and Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA.
Annu Rev Phys Chem. 2021 Apr 20;72:423-443. doi: 10.1146/annurev-physchem-090519-045502. Epub 2021 Jan 22.
Because plasmonic metal nanostructures combine strong light absorption with catalytically active surfaces, they have become platforms for the light-assisted catalysis of chemical reactions. The enhancement of reaction rates by plasmonic excitation has been extensively discussed. This review focuses on a less discussed aspect: the induction of new reaction pathways by light excitation. Through commentary on seminal reports, we describe the principles behind the optical modulation of chemical reactivity and selectivity on plasmonic metal nanostructures. Central to these phenomena are excited charge carriers generated by plasmonic excitation, which modify the energy landscape available to surface reactive species and unlock pathways not conventionally available in thermal catalysis. Photogenerated carriers can trigger bond dissociation or desorption in an adsorbate-selective manner, drive charge transfer and multielectron redox reactions, and generate radical intermediates. Through one or more of these mechanisms, a specific pathway becomes favored under light. By improved control over these mechanisms, light-assisted catalysis can be transformational for chemical synthesis and energy conversion.
由于等离子体金属纳米结构将强光吸收与具有催化活性的表面相结合,它们已成为光辅助催化化学反应的平台。等离子体激发对反应速率的增强作用已得到广泛讨论。本综述聚焦于一个较少被讨论的方面:光激发诱导新的反应途径。通过对开创性报告的评论,我们描述了等离子体金属纳米结构上化学反应性和选择性的光学调制背后的原理。这些现象的核心是由等离子体激发产生的激发电荷载流子,它们改变了表面反应物种可利用的能量格局,并开启了热催化中通常不存在的途径。光生载流子可以以吸附质选择性的方式引发键解离或解吸,驱动电荷转移和多电子氧化还原反应,并生成自由基中间体。通过这些机制中的一种或多种,特定的途径在光照下变得更有利。通过对这些机制的更好控制,光辅助催化对于化学合成和能量转换可能具有变革性。