Huang Jinbo, Xue Shuai, Xie Yu-Qing, Teixeira Ana Palma, Fussenegger Martin
Department of Biosystems Science and Engineering, ETH Zurich, Klingelbergstrasse 48, Basel, CH-4056, Switzerland.
Key Laboratory of Growth Regulation and Translational Research of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, Zhejiang, China.
Adv Sci (Weinh). 2024 Jul;11(28):e2309411. doi: 10.1002/advs.202309411. Epub 2024 May 13.
Despite the array of mammalian transgene switches available for regulating therapeutic protein expression in response to small molecules or physical stimuli, issues remain, including cytotoxicity of chemical inducers and limited biocompatibility of physical cues. This study introduces gene switches driven by short peptides comprising eight or fewer amino acid residues. Utilizing a competence regulator (ComR) and sigma factor X-inducing peptide (XIP) from Streptococcus vestibularis as the receptor and inducer, respectively, this study develops two strategies for a peptide-activated transgene control system. The first strategy involves fusing ComR with a transactivation domain and utilizes ComR-dependent synthetic promoters to drive expression of the gene-of-interest, activated by XIP, thereby confirming its membrane penetrability and intracellular functionality. The second strategy features an orthogonal synthetic receptor exposing ComR extracellularly (ComR), greatly increasing sensitivity with exceptional responsiveness to short peptides. In a proof-of-concept study, peptides are administered to type-1 diabetic mice with microencapsulated engineered human cells expressing ComR for control of insulin expression, restoring normoglycemia. It is envisioned that this system will encourage the development of short peptide drugs and promote the introduction of non-toxic, orthogonal, and highly biocompatible personalized biopharmaceuticals for gene- and cell-based therapies.
尽管有一系列可用于响应小分子或物理刺激来调节治疗性蛋白质表达的哺乳动物转基因开关,但问题依然存在,包括化学诱导剂的细胞毒性和物理信号的生物相容性有限。本研究引入了由八个或更少氨基酸残基组成的短肽驱动的基因开关。本研究分别利用来自前庭链球菌的感受态调节因子(ComR)和σ因子X诱导肽(XIP)作为受体和诱导剂,开发了两种用于肽激活转基因控制系统的策略。第一种策略是将ComR与反式激活结构域融合,并利用ComR依赖性合成启动子来驱动目的基因的表达,该表达由XIP激活,从而证实其膜穿透性和细胞内功能。第二种策略的特点是一种正交合成受体,其在细胞外暴露ComR(ComR),极大地提高了对短肽的敏感性和特殊反应性。在一项概念验证研究中,将肽给予患有微囊化工程化人类细胞的1型糖尿病小鼠,这些细胞表达ComR以控制胰岛素表达,恢复正常血糖水平。预计该系统将促进短肽药物的开发,并推动引入用于基于基因和细胞的疗法的无毒、正交且具有高度生物相容性的个性化生物药物。