Cancer Early Detection Advanced Research (CEDAR) Center, Knight Cancer Institute, School of Medicine, Oregon Health and Science University, Portland, Oregon, USA.
Department of Biomaterial and Biomedical Sciences, School of Dentistry, Oregon Health and Science University, Portland, Oregon, USA.
Microbiol Spectr. 2024 Jun 4;12(6):e0051724. doi: 10.1128/spectrum.00517-24. Epub 2024 Apr 30.
There is a growing interest in the use of probiotic bacteria as biosensors for the detection of disease. However, there is a lack of bacterial receptors developed for specific disease biomarkers. Here, we have investigated the use of the peptide-regulated transcription factor ComR from S. for specific peptide biomarker detection. ComR exhibits a number of attractive features that are potentially exploitable to create a biomolecular switch for engineered biosensor circuitry within the probiotic organism WCFS1. Through iterative design-build-test cycles, we developed a genomically integrated, ComR-based biosensor circuit that allowed WCFS1 to detect low nanomolar concentrations of ComR's cognate peptide XIP. By screening a library of ComR proteins with mutant residues substituted at the K100 position we identified mutations that increased the specificity of ComR toward an amidated version of its cognate peptide, demonstrating the potential for ComR to detect this important class of biomarker.IMPORTANCEUsing bacteria to detect disease is an exciting possibility under active study. Detecting extracellular peptides with specific amino acid sequences would be particularly useful as these are important markers of health and disease (biomarkers). In this work, we show that a probiotic bacteria () can be genetically engineered to detect specific extracellular peptides using the protein ComR from Streptococcus bacteria. In its natural form, ComR allowed the probiotic bacteria to detect a specific peptide, XIP. We then modified XIP to be more like the peptide biomarkers found in humans and engineered ComR so that it activated with this modified XIP and not the original XIP. This newly engineered ComR also worked in the probiotic bacteria, as expected. This suggests that with additional engineering, ComR might be able to activate with human peptide biomarkers and be used by genetically engineered probiotic bacteria to better detect disease.
人们对利用益生菌细菌作为生物传感器来检测疾病的方法越来越感兴趣。然而,目前针对特定疾病生物标志物开发的细菌受体还比较缺乏。在这里,我们研究了利用来自 S. 的肽调节转录因子 ComR 来特异性检测肽生物标志物。ComR 具有许多有吸引力的特征,这些特征可能可用于在益生菌生物体 WCFS1 内创建用于工程生物传感器电路的生物分子开关。通过迭代设计-构建-测试循环,我们开发了一种基于 ComR 的基因组整合生物传感器电路,使 WCFS1 能够检测到 ComR 同源肽 XIP 的低纳摩尔浓度。通过筛选 K100 位置突变残基的 ComR 蛋白文库,我们鉴定了增加 ComR 对其同源肽酰胺化形式特异性的突变,这表明 ComR 具有检测这种重要生物标志物类别的潜力。
重要性:
利用细菌来检测疾病是一个备受关注的研究领域。检测具有特定氨基酸序列的细胞外肽将特别有用,因为这些肽是健康和疾病(生物标志物)的重要标志物。在这项工作中,我们表明,通过对来自链球菌的蛋白质 ComR 进行基因工程改造,益生菌()可以被遗传工程改造以检测特定的细胞外肽。在其自然形式下,ComR 允许益生菌检测到特定的肽 XIP。然后,我们将 XIP 修饰得更像人类中发现的肽生物标志物,并对 ComR 进行工程改造,使其与修饰后的 XIP 而不是原始的 XIP 激活。这种新工程化的 ComR 也在益生菌中正常工作,这表明通过进一步的工程设计,ComR 可能能够与人类肽生物标志物激活,并被遗传工程改造的益生菌用于更好地检测疾病。