Suppr超能文献

TransFOL:药物相互作用中复杂关系推理的逻辑查询模型。

TransFOL: A Logical Query Model for Complex Relational Reasoning in Drug-Drug Interaction.

出版信息

IEEE J Biomed Health Inform. 2024 Aug;28(8):4975-4985. doi: 10.1109/JBHI.2024.3401035. Epub 2024 Aug 6.

Abstract

Predicting drug-drug interaction (DDI) plays a crucial role in drug recommendation and discovery. However, wet lab methods are prohibitively expensive and time-consuming due to drug interactions. In recent years, deep learning methods have gained widespread use in drug reasoning. Although these methods have demonstrated effectiveness, they can only predict the interaction between a drug pair and do not contain any other information. However, DDI is greatly affected by various other biomedical factors (such as the dose of the drug). As a result, it is challenging to apply them to more complex and meaningful reasoning tasks. Therefore, this study regards DDI as a link prediction problem on knowledge graphs and proposes a DDI prediction model based on Cross-Transformer and Graph Convolutional Networks (GCNs) in first-order logical query form, TransFOL. In the model, a biomedical query graph is first built to learn the embedding representation. Subsequently, an enhancement module is designed to aggregate the semantics of entities and relations. Cross-Transformer is used for encoding to obtain semantic information between nodes, and GCN is used to gather neighbour information further and predict inference results. To evaluate the performance of TransFOL on common DDI tasks, we conduct experiments on two benchmark datasets. The experimental results indicate that our model outperforms state-of-the-art methods on traditional DDI tasks. Additionally, we introduce different biomedical information in the other two experiments to make the settings more realistic. Experimental results verify the strong drug reasoning ability and generalization of TransFOL in complex settings.

摘要

预测药物-药物相互作用(DDI)在药物推荐和发现中起着至关重要的作用。然而,由于药物相互作用,湿实验室方法既昂贵又耗时。近年来,深度学习方法在药物推理中得到了广泛的应用。虽然这些方法已经证明了其有效性,但它们只能预测药物对之间的相互作用,不包含任何其他信息。然而,DDI 受到各种其他生物医学因素(如药物剂量)的极大影响。因此,将它们应用于更复杂和有意义的推理任务具有挑战性。因此,本研究将 DDI 视为知识图上的链接预测问题,并提出了一种基于 Cross-Transformer 和图卷积网络(GCNs)的一阶逻辑查询形式的 DDI 预测模型 TransFOL。在该模型中,首先构建生物医学查询图以学习嵌入表示。随后,设计了一个增强模块来聚合实体和关系的语义。Cross-Transformer 用于编码以获取节点之间的语义信息,GCN 用于进一步收集邻居信息并预测推理结果。为了评估 TransFOL 在常见 DDI 任务上的性能,我们在两个基准数据集上进行了实验。实验结果表明,我们的模型在传统 DDI 任务上优于最先进的方法。此外,我们在另外两个实验中引入了不同的生物医学信息,以使设置更加真实。实验结果验证了 TransFOL 在复杂环境下具有强大的药物推理能力和泛化能力。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验