Suppr超能文献

MM-GANN-DDI:用于预测药物-药物相互作用事件的多模态图不可知神经网络。

MM-GANN-DDI: Multimodal Graph-Agnostic Neural Networks for Predicting Drug-Drug Interaction Events.

机构信息

Faculty of Innovation Engineering, Macau University of Science and Technology, 999078, Macao Special Administrative Region of China; School of Data Science, The Chinese University of Hong Kong-Shenzhen, Shenzhen, 518055, China.

Peng Cheng Laboratory, Shenzhen, 518055, China.

出版信息

Comput Biol Med. 2023 Nov;166:107492. doi: 10.1016/j.compbiomed.2023.107492. Epub 2023 Sep 23.

Abstract

Personalized treatment of complex diseases relies on combined medication. However, the occurrence of unexpected drug-drug interactions (DDIs) in these combinations can lead to adverse effects or even fatalities. Although recent computational methods exhibit promising performance in DDI screening, their practical implementation faces two significant challenges: (i) the availability of comprehensive datasets to support clinical application, and (ii) the ability to infer DDI types for new drugs beyond the existing dataset coverage. To mitigate these challenges, we propose MM-GANN-DDI: a Multimodal Graph-Agnostic Neural Network for Predicting Drug-Drug Interaction Events. We first mine six drug modalities and incorporate a graph attention (GAT) mechanism to fuse these modalities with the topological features of the DDI graph. We further propose a novel graph neural network training mechanism called graph-agnostic meta-training (GAMT), which effectively leverages topological information from the DDI graph and efficiently predicts DDI types for new drugs beyond the available dataset. Specifically, GAMT samples meta-graphs from the original DDI graph, splitting them into support and query sets to simulate seen and unseen drugs. Two-level optimizations are applied to enhance the model's generalization capability. We evaluate our model on two datasets (DB-v1 and DB-v2) across three tasks. Our MM-GANN-DDI demonstrates competitive performance on all three tasks. Notably, in Task 2, which focuses on predicting DDI types for drugs outside the dataset, our proposed model outperforms other methods, exhibiting an improvement of 4.6 percentage points in AUPR on DB-v1 and 5.9 percentage points on DB-v2. Additionally, our model surpasses state-of-the-art methods and classic approaches in terms of accuracy, F1 score, precision, and recall. Ablation experiments provide further validation of the effectiveness of the proposed model design. Importantly, our model exhibits the potential to discover unobserved DDIs, demonstrating its practical application in clinical medication.

摘要

个性化治疗复杂疾病依赖于联合用药。然而,这些组合中意外的药物-药物相互作用(DDI)的发生可能导致不良反应,甚至致命。尽管最近的计算方法在 DDI 筛选方面表现出了有前景的性能,但它们的实际实施面临两个重大挑战:(i)缺乏支持临床应用的全面数据集,以及(ii)推断现有数据集覆盖范围之外的新药的 DDI 类型的能力。为了缓解这些挑战,我们提出了 MM-GANN-DDI:一种用于预测药物-药物相互作用事件的多模态图不可知神经网络。我们首先挖掘六种药物模态,并结合图注意力(GAT)机制,将这些模态与 DDI 图的拓扑特征融合。我们进一步提出了一种新颖的图神经网络训练机制,称为图不可知元训练(GAMT),它有效地利用了 DDI 图的拓扑信息,并有效地预测了现有数据集之外的新药的 DDI 类型。具体来说,GAMT 从原始 DDI 图中采样元图,将其划分为支持集和查询集,以模拟已观察到和未观察到的药物。应用两级优化来增强模型的泛化能力。我们在两个数据集(DB-v1 和 DB-v2)上评估了三个任务的模型。我们的 MM-GANN-DDI 在所有三个任务上都表现出了竞争性能。值得注意的是,在任务 2 中,重点是预测数据集外药物的 DDI 类型,我们提出的模型在 DB-v1 上的 AUPR 上优于其他方法,提高了 4.6 个百分点,在 DB-v2 上提高了 5.9 个百分点。此外,我们的模型在准确性、F1 得分、精度和召回率方面都超过了最先进的方法和经典方法。消融实验进一步验证了所提出的模型设计的有效性。重要的是,我们的模型具有发现未观察到的 DDI 的潜力,展示了其在临床用药中的实际应用。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验