Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science and Technology, Xinjiang University, Urumqi, Xinjiang 830046, China.
National Key Laboratory of Tropical Crop Breeding, Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Synthetic Biology, Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518120, China.
Plant Physiol. 2024 Jul 31;195(4):2799-2814. doi: 10.1093/plphys/kiae258.
The cultivated apple (Malus domestica Borkh.) is a cross-pollinated perennial fruit tree of great economic importance. Earlier versions of apple reference genomes were unphased, fragmented, and lacked comprehensive insights into the apple's highly heterozygous genome, which impeded advances in genetic studies and breeding programs. In this study, we assembled a haplotype-resolved telomere-to-telomere (T2T) reference genome for the diploid apple cultivar Golden Delicious. Subsequently, we constructed a pangenome based on 12 assemblies from wild and cultivated species to investigate the dynamic changes of functional genes. Our results revealed the gene gain and loss events during apple domestication. Compared with cultivated species, more gene families in wild species were significantly enriched in oxidative phosphorylation, pentose metabolic process, responses to salt, and abscisic acid biosynthesis process. Our analyses also demonstrated a higher prevalence of different types of resistance gene analogs (RGAs) in cultivars than their wild relatives, partially attributed to segmental and tandem duplication events in certain RGAs classes. Structural variations, mainly deletions and insertions, have affected the presence and absence of TIR-NB-ARC-LRR, NB-ARC-LRR, and CC-NB-ARC-LRR genes. Additionally, hybridization/introgression from wild species has also contributed to the expansion of resistance genes in domesticated apples. Our haplotype-resolved T2T genome and pangenome provide important resources for genetic studies of apples, emphasizing the need to study the evolutionary mechanisms of resistance genes in apple breeding.
栽培苹果(Malus domestica Borkh.)是一种经济价值很高的异花授粉多年生果树。早期的苹果参考基因组版本未进行相位划分、碎片化,缺乏对苹果高度杂合基因组的全面了解,这阻碍了遗传研究和育种计划的进展。在这项研究中,我们组装了一个二倍体栽培品种金冠苹果的单倍型分辨率端粒到端粒(T2T)参考基因组。随后,我们构建了一个基于 12 个来自野生和栽培种的组装的泛基因组,以研究功能基因的动态变化。我们的结果揭示了苹果驯化过程中的基因获得和丢失事件。与栽培种相比,野生种中更多的基因家族在氧化磷酸化、戊糖代谢过程、盐响应和脱落酸生物合成过程中显著富集。我们的分析还表明,与野生亲缘相比,栽培品种中不同类型的抗性基因类似物(RGA)更为普遍,这部分归因于某些 RGA 类别的片段和串联重复事件。结构变异,主要是缺失和插入,影响了 TIR-NB-ARC-LRR、NB-ARC-LRR 和 CC-NB-ARC-LRR 基因的存在与否。此外,来自野生种的杂交/渗入也导致了驯化苹果中抗性基因的扩张。我们的单倍型分辨率 T2T 基因组和泛基因组为苹果的遗传研究提供了重要资源,强调了在苹果育种中研究抗性基因进化机制的必要性。