Department of Radiation Oncology, University of Texas Southwestern Medical Center, Dallas, TX, United States of America.
Department of Radiation Oncology and Molecular Radiation Sciences, Johns Hopkins University, Baltimore, MD, United States of America.
Phys Med Biol. 2024 May 30;69(11):115049. doi: 10.1088/1361-6560/ad4b90.
Automatic treatment planning of radiation therapy (RT) is desired to ensure plan quality, improve planning efficiency, and reduce human errors. We have proposed an Intelligent Automatic Treatment Planning framework with a virtual treatment planner (VTP), an artificial intelligence robot built using deep reinforcement learning, autonomously operating a treatment planning system (TPS). This study extends our previous successes in relatively simple prostate cancer RT planning to head-and-neck (H&N) cancer, a more challenging context even for human planners due to multiple prescription levels, proximity of targets to critical organs, and tight dosimetric constraints.We integrated VTP with a real clinical TPS to establish a fully automated planning workflow guided by VTP. This integration allowed direct model training and evaluation using the clinical TPS. We designed the VTP network structure to approach the decision-making process in RT planning in a hierarchical manner that mirrors human planners. The VTP network was trained via the-learning framework. To assess the effectiveness of VTP, we conducted a prospective evaluation in the 2023 Planning Challenge organized by the American Association of Medical Dosimetrists (AAMD). We extended our evaluation to include 20 clinical H&N cancer patients, comparing the plans generated by VTP against their clinical plans.In the prospective evaluation for the AAMD Planning Challenge, VTP achieved a plan score of 139.08 in the initial phase evaluating plan quality, and 15 min of planning time with the first place ranking in the adaptive phase competing for planning efficiency while meeting all plan quality requirements. For clinical cases, VTP-generated plans achieved an average VTP score of125.33±11.12, which outperformed the corresponding clinical plans with an average score of117.76±13.56.We successfully integrated VTP with the clinical TPS to achieve a fully automated treatment planning workflow. The compelling performance of VTP demonstrated its potential in automating H&N cancer RT planning.
自动放射治疗(RT)计划旨在确保计划质量、提高规划效率和减少人为错误。我们提出了一种具有虚拟治疗计划器(VTP)的智能自动治疗计划框架,VTP 是一个使用深度强化学习构建的人工智能机器人,可自主操作治疗计划系统(TPS)。本研究扩展了我们之前在相对简单的前列腺癌 RT 计划方面的成功经验,将其应用于头颈部(H&N)癌症,即使对于人类规划者来说,这也是一个更具挑战性的环境,因为存在多个处方水平、靶区与关键器官的接近度以及严格的剂量学限制。我们将 VTP 与实际临床 TPS 集成,建立了由 VTP 指导的全自动化规划工作流程。这种集成允许直接使用临床 TPS 进行模型培训和评估。我们设计了 VTP 网络结构,以分层的方式接近 RT 规划中的决策过程,这种方式反映了人类规划者的决策过程。VTP 网络是通过 - 学习框架进行训练的。为了评估 VTP 的有效性,我们在由美国医学剂量师协会(AAMD)组织的 2023 年计划挑战赛中进行了前瞻性评估。我们将评估扩展到包括 20 名临床 H&N 癌症患者,将 VTP 生成的计划与他们的临床计划进行比较。在 AAMD 计划挑战赛的前瞻性评估中,VTP 在初始阶段评估计划质量时获得了 139.08 的计划评分,在自适应阶段竞争规划效率时仅用时 15 分钟,并获得了第一名的排名,同时满足了所有计划质量要求。对于临床病例,VTP 生成的计划平均获得 125.33±11.12 的 VTP 评分,优于平均得分为 117.76±13.56 的相应临床计划。我们成功地将 VTP 与临床 TPS 集成,实现了全自动化的治疗计划工作流程。VTP 的出色表现证明了其在自动化 H&N 癌症 RT 计划方面的潜力。