Suppr超能文献

调节分枝杆菌包膜完整性以实现与苯并噻唑类抗生素的协同作用。

Modulating mycobacterial envelope integrity for antibiotic synergy with benzothiazoles.

机构信息

https://ror.org/00q6h8f30 Department of Medical Microbiology and Infection Prevention, Amsterdam UMC, Location VU Medical Center, Amsterdam, Netherlands.

Federal Research Centre "Fundamentals of Biotechnology" of the Russian Academy of Sciences (Research Centre of Biotechnology RAS), Moscow, Russia.

出版信息

Life Sci Alliance. 2024 May 14;7(7). doi: 10.26508/lsa.202302509. Print 2024 Jul.

Abstract

Developing effective tuberculosis drugs is hindered by mycobacteria's intrinsic antibiotic resistance because of their impermeable cell envelope. Using benzothiazole compounds, we aimed to increase mycobacterial cell envelope permeability and weaken the defenses of , serving as a model for Initial hit, BT-08, significantly boosted ethidium bromide uptake, indicating enhanced membrane permeability. It also demonstrated efficacy in the -zebrafish embryo infection model and -infected macrophages. Notably, BT-08 synergized with established antibiotics, including vancomycin and rifampicin. Subsequent medicinal chemistry optimization led to BT-37, a non-toxic and more potent derivative, also enhancing ethidium bromide uptake and maintaining synergy with rifampicin in infected zebrafish embryos. Mutants of resistant to BT-37 revealed that MMAR_0407 (Rv0164) is the molecular target and that this target plays a role in the observed synergy and permeability. This study introduces novel compounds targeting a new mycobacterial vulnerability and highlights their cooperative and synergistic interactions with existing antibiotics.

摘要

开发有效的结核病药物受到分枝杆菌固有抗生素耐药性的阻碍,因为它们的细胞包膜不透水。本研究使用苯并噻唑化合物,旨在增加分枝杆菌细胞包膜通透性并削弱其防御机制,将作为一种模型来研究 。初步命中化合物 BT-08 显著增加溴化乙锭摄取,表明增强了膜通透性。它还在 - 斑马鱼胚胎感染模型和 - 感染的巨噬细胞中表现出疗效。值得注意的是,BT-08 与万古霉素和利福平等已建立的抗生素具有协同作用。随后的药物化学优化导致了 BT-37 的产生,这是一种无毒且更有效的衍生物,它同样增强了溴化乙锭摄取,并在感染的斑马鱼胚胎中维持与利福平的协同作用。对 BT-37 耐药的 突变体表明,MMAR_0407(Rv0164)是分子靶标,该靶标在观察到的协同作用和通透性中起作用。本研究介绍了针对新的分枝杆菌弱点的新型化合物,并强调了它们与现有抗生素的协同和增效相互作用。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b668/11094368/a2ab82b0b6f0/LSA-2023-02509_Fig1.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验