Center for Computational Materials Science, University of Malakand, Chakdara, Pakistan.
Department of Chemistry, University of Malakand, Chakdara, Pakistan.
J Mol Model. 2024 May 14;30(6):166. doi: 10.1007/s00894-024-05954-9.
Coronavirus (COVID-19) is a novel respiratory viral infection, causing a relatively large number of deaths especially in people who underly lung diseases such as chronic obstructive pulmonary and asthma, and humans are still suffering from the limited testing capacity. In this article, a solution is proposed for the detection of COVID-19 viral infections through the analysis of exhaled breath gasses, i.e., nitric oxide, a prominent biomarker released by respiratory epithelial, as a non-invasive and time-saving approach. Here, we designed a novel and low-cost N and P co-doped C fullerene-based breathalyzer for the detection of NO gas exhaled from the respiratory epithelial cells. This breathalyzer shows a quick response to the detection of NO gas by directly converting NO to NO without passing any energy barrier (0 kcal/mol activation energy). The recovery time of breathalyzer is very short (0.98 × 10 s), whereas it is highly selective for NO sensing in the mixture of CO and HO gasses. The study provides an idea for the synthesis of low-cost (compared to previously reported Au atom decorated nanostructure and metal-based breathalyzer), efficient, and highly selective N and P co-doped C fullerene-based breathalyzer for COVID-19 detection.
The geometries of N and P-doped systems and gas molecules are simulated using spin-polarized density functional theory calculations.
冠状病毒(COVID-19)是一种新型呼吸道病毒感染,特别是在患有慢性阻塞性肺疾病和哮喘等肺部疾病的人群中,导致了相对较多的死亡人数,而人类仍在遭受检测能力有限的困扰。在本文中,我们提出了一种通过分析呼出气体(即一氧化氮)来检测 COVID-19 病毒感染的解决方案,一氧化氮是呼吸道上皮细胞释放的一种显著生物标志物,是一种非侵入性和节省时间的方法。在这里,我们设计了一种新颖且低成本的 N 和 P 共掺杂 C 富勒烯基呼吸分析仪,用于检测从呼吸上皮细胞中呼出的 NO 气体。该呼吸分析仪通过直接将 NO 转化为 NO,而无需通过任何能量障碍(0 kcal/mol 活化能),从而对 NO 气体的检测具有快速响应。呼吸分析仪的恢复时间非常短(0.98 × 10 s),而在 CO 和 HO 气体混合物中对 NO 传感具有高度选择性。该研究为 COVID-19 检测提供了一种低成本(与之前报道的 Au 原子修饰纳米结构和基于金属的呼吸分析仪相比)、高效和高选择性的 N 和 P 共掺杂 C 富勒烯基呼吸分析仪的合成思路。
使用自旋极化密度泛函理论计算模拟了 N 和 P 掺杂系统和气体分子的几何形状。