Suppr超能文献

基于人工智能的预测方法,通过使用计算流体力学-人工神经网络(CFD-ANN)和列文伯格-马夸尔特算法,在奥斯特瓦尔德-德瓦勒流体的驱动腔内进行有限体积法(FFB)传播。

AI-based predictive approach via FFB propagation in a driven-cavity of Ostwald de-Waele fluid using CFD-ANN and Levenberg-Marquardt.

作者信息

Refaie Ali Ahmed, Mahmood Rashid, Asghar Atif, Majeed Afraz Hussain, Behiry Mohamed H

机构信息

Department of Mathematics and Computer Science, Faculty of Science, Menoufia University, Shebin El Kom, 32511, Menofia, Egypt.

Department of Mathematics, Air University, PAF Complex E-9, Islamabad, 44000, Pakistan.

出版信息

Sci Rep. 2024 May 14;14(1):11024. doi: 10.1038/s41598-024-60401-2.

Abstract

The integration of Artificial Intelligence (AI) and Machine Learning (ML) techniques into computational science has ushered in a new era of innovation and efficiency in various fields, with particular significance in computational fluid dynamics (CFD). Several methods based on AI and Machine Learning (ML) have been standardized in many fields of computational science, including computational fluid dynamics (CFD). This study aims to couple CFD with artificial neural networks (ANNs) to predict the fluid forces that arise when a flowing fluid interacts with obstacles installed in the flow domain. The momentum equation elucidating the flow has been simulated by adopting the finite element method (FEM) for a range of rheological and kinematic conditions. Hydrodynamic forces, including pressure drop between the back and front of the obstacle, surface drag, and lift variations, are measured on the outer surface of the cylinder via CFD simulations. This data has subsequently been fed into a Feed-Forward Back (FFB) propagation neural network for the prediction of such forces with completely unknown data. For all cases, higher predictivity is achieved for the drag coefficient (CD) and lift coefficient (CL) since the mean square error (MSE) is within ± 2% and the coefficient of determination (R) is approximately 99% for all the cases. The influence of pertinent parameters like the power law index (n) and Reynolds number (Re) on velocity, pressure, and drag and lift coefficients is also presented for limited cases. Moreover, a significant reduction in computing time has been noticed while applying hybrid CFD-ANN approach as compared with CFD simulations only.

摘要

将人工智能(AI)和机器学习(ML)技术集成到计算科学中,在各个领域开创了一个创新和高效的新时代,在计算流体动力学(CFD)中具有特别重要的意义。基于人工智能和机器学习的几种方法已在计算科学的许多领域得到规范,包括计算流体动力学(CFD)。本研究旨在将CFD与人工神经网络(ANN)相结合,以预测当流动流体与安装在流动域中的障碍物相互作用时产生的流体力。通过采用有限元方法(FEM),针对一系列流变学和运动学条件,模拟了阐明流动的动量方程。通过CFD模拟,在圆柱体的外表面测量包括障碍物前后的压降、表面阻力和升力变化在内的流体动力。随后,这些数据被输入到前馈反向(FFB)传播神经网络中,以利用完全未知的数据预测此类力。对于所有情况,阻力系数(CD)和升力系数(CL)的预测性更高,因为所有情况下的均方误差(MSE)在±2%以内,决定系数(R)约为99%。还给出了幂律指数(n)和雷诺数(Re)等相关参数对速度、压力以及阻力和升力系数的影响,但仅限于有限的情况。此外,与仅进行CFD模拟相比,应用混合CFD-ANN方法时,计算时间显著减少。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2a7e/11094144/4ff7659a3e2c/41598_2024_60401_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验