Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, CA, USA.
Department of Biochemistry, Stanford University, Stanford, CA, USA.
Nat Chem Biol. 2024 Aug;20(8):1086-1093. doi: 10.1038/s41589-024-01619-z. Epub 2024 May 14.
Aromatic amino acids and their derivatives are diverse primary and secondary metabolites with critical roles in protein synthesis, cell structure and integrity, defense and signaling. All de novo aromatic amino acid production relies on a set of ancient and highly conserved chemistries. Here we introduce a new enzymatic transformation for L-tyrosine synthesis by demonstrating that the β-subunit of tryptophan synthase-which natively couples indole and L-serine to form L-tryptophan-can act as a latent 'tyrosine synthase'. A single substitution of a near-universally conserved catalytic residue unlocks activity toward simple phenol analogs and yields exclusive para carbon-carbon bond formation to furnish L-tyrosines. Structural and mechanistic studies show how a new active-site water molecule orients phenols for a nonnative mechanism of alkylation, with additional directed evolution resulting in a net >30,000-fold rate enhancement. This new biocatalyst can be used to efficiently prepare valuable L-tyrosine analogs at gram scales and provides the missing chemistry for a conceptually different pathway to L-tyrosine.
芳香族氨基酸及其衍生物是具有重要作用的多样性初级和次级代谢物,在蛋白质合成、细胞结构和完整性、防御和信号传递中发挥着关键作用。所有新合成的芳香族氨基酸都依赖于一套古老而高度保守的化学物质。在这里,我们通过证明色氨酸合酶的β亚基(它天然地将吲哚和 L-丝氨酸偶联形成 L-色氨酸)可以作为潜在的“酪氨酸合酶”,介绍了一种新的 L-酪氨酸合成酶促转化方法。一个近乎普遍保守的催化残基的单一取代就可以激活简单苯酚类似物,并产生独特的对位碳-碳键形成,从而得到 L-酪氨酸。结构和机制研究表明,新的活性位点水分子如何为非天然的烷基化机制定向苯酚,通过进一步的定向进化,导致净比活性提高了 30000 倍以上。这种新的生物催化剂可以用于高效地在克级规模制备有价值的 L-酪氨酸类似物,并为 L-酪氨酸的概念上不同的途径提供了缺失的化学物质。