Suppr超能文献

ChatGPT 3.5、微软必应和谷歌Gemini在诊断神经眼科病例方面的比较

The Comparison of ChatGPT 3.5, Microsoft Bing, and Google Gemini for Diagnosing Cases of Neuro-Ophthalmology.

作者信息

Shukla Ruchi, Mishra Ashutosh K, Banerjee Nilakshi, Verma Archana

机构信息

Department of Ophthalmology, All India Institute of Medical Sciences, Raebareli, Raebareli, IND.

Department of Neurology, All India Institute of Medical Sciences, Raebareli, Raebareli, IND.

出版信息

Cureus. 2024 Apr 14;16(4):e58232. doi: 10.7759/cureus.58232. eCollection 2024 Apr.

Abstract

OBJECTIVE

We aim to compare the capabilities of ChatGPT 3.5, Microsoft Bing, and Google Gemini in handling neuro-ophthalmological case scenarios.

METHODS

Ten randomly chosen neuro-ophthalmological cases from a publicly accessible database were used to test the accuracy and suitability of all three models, and the case details were followed by the following query: "What is the most probable diagnosis?"

RESULTS

On the basis of the accuracy of diagnosis, all three chat boxes (ChatGPT 3.5, Microsoft Bing, and Google Gemini) gave the correct diagnosis in four (40%) out of 10 cases, whereas in terms of suitability, ChatGPT 3.5, Microsoft Bing, and Google Gemini gave six (60%), five (50%), and five (50%) out of 10 case scenarios, respectively.

CONCLUSION

ChatGPT 3.5 performs better than the other two when it comes to handling neuro-ophthalmological case difficulties. These results highlight the potential benefits of developing artificial intelligence (AI) models for improving medical education and ocular diagnostics.

摘要

目的

我们旨在比较ChatGPT 3.5、微软必应和谷歌Gemini处理神经眼科病例的能力。

方法

从一个可公开访问的数据库中随机选取10例神经眼科病例,用于测试这三种模型的准确性和适用性,并在病例细节后附上以下问题:“最可能的诊断是什么?”

结果

基于诊断准确性,在10例病例中,所有三个聊天框(ChatGPT 3.5、微软必应和谷歌Gemini)在4例(40%)中给出了正确诊断;而在适用性方面,ChatGPT 3.5、微软必应和谷歌Gemini在10个病例场景中分别给出了6例(60%)、5例(50%)和5例(50%)。

结论

在处理神经眼科病例难题方面,ChatGPT 3.5比其他两者表现更好。这些结果凸显了开发人工智能(AI)模型以改善医学教育和眼科诊断的潜在益处。

相似文献

引用本文的文献

本文引用的文献

1
Can large language models reason about medical questions?大型语言模型能对医学问题进行推理吗?
Patterns (N Y). 2024 Mar 1;5(3):100943. doi: 10.1016/j.patter.2024.100943. eCollection 2024 Mar 8.
9
ChatGPT: five priorities for research.ChatGPT:研究的五个优先事项。
Nature. 2023 Feb;614(7947):224-226. doi: 10.1038/d41586-023-00288-7.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验