Shukla Ruchi, Mishra Ashutosh K, Banerjee Nilakshi, Verma Archana
Department of Ophthalmology, All India Institute of Medical Sciences, Raebareli, Raebareli, IND.
Department of Neurology, All India Institute of Medical Sciences, Raebareli, Raebareli, IND.
Cureus. 2024 Apr 14;16(4):e58232. doi: 10.7759/cureus.58232. eCollection 2024 Apr.
We aim to compare the capabilities of ChatGPT 3.5, Microsoft Bing, and Google Gemini in handling neuro-ophthalmological case scenarios.
Ten randomly chosen neuro-ophthalmological cases from a publicly accessible database were used to test the accuracy and suitability of all three models, and the case details were followed by the following query: "What is the most probable diagnosis?"
On the basis of the accuracy of diagnosis, all three chat boxes (ChatGPT 3.5, Microsoft Bing, and Google Gemini) gave the correct diagnosis in four (40%) out of 10 cases, whereas in terms of suitability, ChatGPT 3.5, Microsoft Bing, and Google Gemini gave six (60%), five (50%), and five (50%) out of 10 case scenarios, respectively.
ChatGPT 3.5 performs better than the other two when it comes to handling neuro-ophthalmological case difficulties. These results highlight the potential benefits of developing artificial intelligence (AI) models for improving medical education and ocular diagnostics.
我们旨在比较ChatGPT 3.5、微软必应和谷歌Gemini处理神经眼科病例的能力。
从一个可公开访问的数据库中随机选取10例神经眼科病例,用于测试这三种模型的准确性和适用性,并在病例细节后附上以下问题:“最可能的诊断是什么?”
基于诊断准确性,在10例病例中,所有三个聊天框(ChatGPT 3.5、微软必应和谷歌Gemini)在4例(40%)中给出了正确诊断;而在适用性方面,ChatGPT 3.5、微软必应和谷歌Gemini在10个病例场景中分别给出了6例(60%)、5例(50%)和5例(50%)。
在处理神经眼科病例难题方面,ChatGPT 3.5比其他两者表现更好。这些结果凸显了开发人工智能(AI)模型以改善医学教育和眼科诊断的潜在益处。