Wright Sarah N, Colton Scott, Schaffer Leah V, Pillich Rudolf T, Churas Christopher, Pratt Dexter, Ideker Trey
bioRxiv. 2024 Apr 29:2024.04.26.587073. doi: 10.1101/2024.04.26.587073.
Advancements in genomic and proteomic technologies have powered the use of gene and protein networks ("interactomes") for understanding genotype-phenotype translation. However, the proliferation of interactomes complicates the selection of networks for specific applications. Here, we present a comprehensive evaluation of 46 current human interactomes, encompassing protein-protein interactions as well as gene regulatory, signaling, colocalization, and genetic interaction networks. Our analysis shows that large composite networks such as HumanNet, STRING, and FunCoup are most effective for identifying disease genes, while smaller networks such as DIP and SIGNOR demonstrate strong interaction prediction performance. These findings provide a benchmark for interactomes across diverse network biology applications and clarify factors that influence network performance. Furthermore, our evaluation pipeline paves the way for continued assessment of emerging and updated interaction networks in the future.
基因组学和蛋白质组学技术的进步推动了基因和蛋白质网络(“相互作用组”)在理解基因型-表型转化方面的应用。然而,相互作用组的激增使得为特定应用选择合适的网络变得复杂。在此,我们对46个当前的人类相互作用组进行了全面评估,涵盖了蛋白质-蛋白质相互作用以及基因调控、信号传导、共定位和遗传相互作用网络。我们的分析表明,像HumanNet、STRING和FunCoup这样的大型复合网络在识别疾病基因方面最为有效,而像DIP和SIGNOR这样的小型网络则表现出强大的相互作用预测性能。这些发现为各种网络生物学应用中的相互作用组提供了一个基准,并阐明了影响网络性能的因素。此外,我们的评估流程为未来持续评估新兴和更新的相互作用网络铺平了道路。