Suppr超能文献

多态系统中电子跃迁的微扰时间卷积和无时间卷积量子主方程的半经典方法。

Semiclassical approaches to perturbative time-convolution and time-convolutionless quantum master equations for electronic transitions in multistate systems.

作者信息

Sun Xiang, Liu Zengkui

机构信息

Division of Arts and Sciences, NYU Shanghai, 567 West Yangsi Road, Shanghai 200124, China.

NYU-ECNU Center for Computational Chemistry at NYU Shanghai, 3663 Zhongshan Road North, Shanghai 200062, China.

出版信息

J Chem Phys. 2024 May 7;160(17). doi: 10.1063/5.0203080.

Abstract

Understanding the dynamics of photoinduced processes in complex systems is crucial for the development of advanced energy-conversion materials. In this study, we investigate the nonadiabatic dynamics using time-convolution (TC) and time-convolutionless (TCL) quantum master equations (QMEs) based on treating electronic couplings as perturbation within the framework of multistate harmonic (MSH) models. The MSH model Hamiltonians are mapped from all-atom simulations such that all pairwise reorganization energies are consistently incorporated, leading to a heterogeneous environment that couples to the multiple electronic states differently. Our exploration encompasses the photoinduced charge transfer dynamics in organic photovoltaic carotenoid-porphyrin-C60 triad dissolved in liquid solution and the excitation energy transfer (EET) dynamics in photosynthetic Fenna-Matthews-Olson complexes. By systematically comparing the perturbative TC and TCL QME approaches with exact quantum-mechanical and various semiclassical approximate kernels, we demonstrate their efficacy and accuracy in capturing the essential features of photoinduced dynamics. Our calculations show that TC QMEs generally yield more accurate results than TCL QMEs, especially in EET, although both methods offer versatile approaches adaptable across different systems. In addition, we investigate various semiclassical approximations featuring the Wigner-transformed and classical nuclear densities as well as the governing dynamics during the quantum coherence period, highlighting the trade-off between accuracy and computational cost. This work provides valuable insights into the applicability and performance of TC and TCL QME approaches via the MSH model, offering guidance for realistic applications to condensed-phase systems on the atomistic level.

摘要

了解复杂系统中光诱导过程的动力学对于先进能量转换材料的开发至关重要。在本研究中,我们基于将电子耦合视为多态谐波(MSH)模型框架内的微扰,使用时间卷积(TC)和无时间卷积(TCL)量子主方程(QME)来研究非绝热动力学。MSH模型哈密顿量是从全原子模拟映射而来的,这样所有成对的重组能都被一致地纳入,从而导致一个与多个电子态以不同方式耦合的异质环境。我们的探索涵盖了溶解在液体溶液中的有机光伏类胡萝卜素 - 卟啉 - C60三联体中的光诱导电荷转移动力学以及光合芬纳 - 马修斯 - 奥尔森复合物中的激发能量转移(EET)动力学。通过系统地将微扰TC和TCL QME方法与精确量子力学和各种半经典近似核进行比较,我们展示了它们在捕捉光诱导动力学基本特征方面的有效性和准确性。我们的计算表明,TC QME通常比TCL QME产生更准确的结果,特别是在EET方面,尽管这两种方法都提供了适用于不同系统的通用方法。此外,我们研究了各种以维格纳变换和经典核密度为特征的半经典近似以及量子相干期间的主导动力学,突出了准确性和计算成本之间的权衡。这项工作通过MSH模型为TC和TCL QME方法的适用性和性能提供了有价值的见解,为在原子水平上对凝聚相系统的实际应用提供了指导。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验