Suppr超能文献

为何气泡比液滴合并得更快:界面流动性和表面电荷的影响

Why Bubbles Coalesce Faster than Droplets: The Effects of Interface Mobility and Surface Charge.

作者信息

Vakarelski Ivan U, Kamoliddinov Farrukh, Thoroddsen Sigurdur T

机构信息

Division of Physical Sciences and Engineering, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia.

Department of Chemical and Pharmaceutical Engineering, Faculty of Chemistry and Pharmacy, Sofia University,1 James Bourchier Avenue, 1164 Sofia, Bulgaria.

出版信息

Langmuir. 2024 May 28;40(21):11340-11351. doi: 10.1021/acs.langmuir.4c01247. Epub 2024 May 15.

Abstract

Air bubbles in pure water appear to coalesce much faster compared to oil emulsion droplets at the same water solution conditions. The main factors explaining this difference in coalescence times could be interface mobility and/or pH-dependent surface charge at the water interface. To quantify the relative importance of these effects, we use high-speed imaging to monitor the coalescence of free-rising air bubbles with the water-air interface as well as free-falling fluorocarbon-oil emulsion droplets with a water-oil interface. We measure the coalescence times of such bubbles and droplets over a range of different water pH values (3.0, 5.6, 11.0). In the case of bubbles, a very fast coalescence (milliseconds) is observed for the entire pH range in pure water, consistent with the hydrodynamics of fully mobile interfaces. However, when the water-air interface is immobilized by the deposition of a monolayer of arachidic acid, the coalescence is significantly delayed. Furthermore, the coalescence times increase with increasing pH. In the case of fluorocarbon-oil droplets, the coalescence is always much slower (seconds) and consistent with immobile interface coalescence. The fluorocarbon droplet's coalescence time is also pH-dependent, with a complete stabilization (no coalescence) observed at pH 11. In the high electrolyte concentration, a 0.6 M NaCl water solution, bubbles, and droplets have similar coalescence times, which could be related to the bubble interface immobilization at the late stage of the coalescence process. Numerical simulations are used to evaluate the time scale of mobile and immobile interface film drainage.

摘要

在相同的水溶液条件下,纯水中的气泡似乎比油乳液液滴聚结得快得多。解释这种聚结时间差异的主要因素可能是界面流动性和/或水界面处pH值依赖的表面电荷。为了量化这些效应的相对重要性,我们使用高速成像来监测自由上升的气泡与水-空气界面的聚结,以及自由下落的氟碳-油乳液液滴与水-油界面的聚结。我们在一系列不同的水pH值(3.0、5.6、11.0)下测量此类气泡和液滴的聚结时间。对于气泡,在纯水中的整个pH范围内都观察到非常快速的聚结(毫秒级),这与完全可移动界面的流体动力学一致。然而,当水-空气界面通过沉积一层花生酸而固定时,聚结会显著延迟。此外,聚结时间随着pH值的增加而增加。对于氟碳-油液滴,聚结总是慢得多(秒级),并且与不可移动界面的聚结一致。氟碳液滴的聚结时间也与pH值有关,在pH值为11时观察到完全稳定(无聚结)。在高电解质浓度(0.6 M NaCl水溶液)下,气泡和液滴具有相似的聚结时间,这可能与聚结过程后期气泡界面的固定有关。数值模拟用于评估可移动和不可移动界面膜排水的时间尺度。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a253/11140758/805dacaf3785/la4c01247_0001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验