Liu Zi-Hao, Cai Xin, Dai Hai-Hua, Zhao Yong-Huan, Gao Zhi-Wei, Yang Yuan-Fan, Liu Yang-Zhi, Yang Meng, Li Min-Qiang, Li Pei-Hua, Huang Xing-Jiu
Key Laboratory of Environmental Optics and Technology, and Environmental Materials and Pollution Control Laboratory, Institute of Solid State Physics, HFIPS, Chinese Academy of Sciences, Hefei 230031, China.
Department of Materials Science and Engineering, University of Science and Technology of China, Hefei 230026, China.
Anal Chem. 2024 Jun 4;96(22):9069-9077. doi: 10.1021/acs.analchem.4c00590. Epub 2024 May 15.
Solid contact (SC) calcium ion-selective electrodes (Ca-ISEs) have been widely applied in the analysis of water quality and body fluids by virtue of the unique advantages of easy operation and rapid response. However, the potential drift during the long-term stability test hinders their further practical applications. Designing novel redox SC layers with large capacitance and high hydrophobicity is a promising approach to stabilize the potential stability, meanwhile, exploring the transduction mechanism is also of great guiding significance for the precise design of SC layer materials. Herein, flower-like copper sulfide (CuS-50) composed of nanosheets is meticulously designed as the redox SC layer by modification with the surfactant (CTAB). The CuS-50-based Ca-ISE (CuS-50/Ca-ISE) demonstrates a near-Nernstian slope of 28.23 mV/dec for Ca in a wide activity linear range of 10 to 10 M, with a low detection limit of 3.16 × 10 M. CuS-50/Ca-ISE possesses an extremely low potential drift of only 1.23 ± 0.13 μV/h in the long-term potential stability test. Notably, X-ray absorption fine-structure (XAFS) spectra and electrochemical experiments are adopted to elucidate the transduction mechanism that the lipophilic anion (TFPB) participates in the redox reaction of CuS-50 at the solid-solid interface of ion-selective membrane (ISM) and redox inorganic SC layer (CuS-50), thereby promoting the generation of free electrons to accelerate ion-electron transduction. This work provides an in-depth comprehension of the transduction mechanism of the potentiometric response and an effective strategy for designing redox materials of ion-electron transduction triggered by lipophilic anions.
固体接触(SC)钙离子选择性电极(Ca - ISEs)凭借操作简便、响应迅速的独特优势,已广泛应用于水质分析和体液分析。然而,长期稳定性测试中的电位漂移阻碍了它们的进一步实际应用。设计具有大电容和高疏水性的新型氧化还原SC层是稳定电位稳定性的一种有前景的方法,同时,探索传感机制对于SC层材料的精确设计也具有重要的指导意义。在此,由纳米片组成的花状硫化铜(CuS - 50)通过表面活性剂(CTAB)修饰被精心设计为氧化还原SC层。基于CuS - 50的Ca - ISE(CuS - 50/Ca - ISE)在10⁻⁶至10⁻¹² M的宽活性线性范围内对Ca表现出接近能斯特斜率28.23 mV/dec,检测限低至3.16×10⁻¹² M。在长期电位稳定性测试中,CuS - 50/Ca - ISE的电位漂移极低,仅为1.23±0.13 μV/h。值得注意的是,采用X射线吸收精细结构(XAFS)光谱和电化学实验来阐明传感机制,即亲脂性阴离子(TFPB)在离子选择性膜(ISM)和氧化还原无机SC层(CuS - 50)的固 - 固界面参与CuS - 50的氧化还原反应,从而促进自由电子的产生以加速离子 - 电子传导。这项工作深入理解了电位响应的传感机制,并为设计由亲脂性阴离子触发的离子 - 电子传导氧化还原材料提供了有效策略。