建立并验证一种用于预测髋部骨折患者术后院内死亡率的人工智能网络应用程序:一项涉及 52707 例病例的全国队列研究。

Establishment and validation of an artificial intelligence web application for predicting postoperative in-hospital mortality in patients with hip fracture: a national cohort study of 52 707 cases.

机构信息

Department of Orthopedics, National Clinical Research Center for Orthopedics, Sports Medicine and Rehabilitation, PLA General Hospital.

Department of Orthopedics, Chinese PLA General Hospital.

出版信息

Int J Surg. 2024 Aug 1;110(8):4876-4892. doi: 10.1097/JS9.0000000000001599.

Abstract

BACKGROUND

In-hospital mortality following hip fractures is a significant concern, and accurate prediction of this outcome is crucial for appropriate clinical management. Nonetheless, there is a lack of effective prediction tools in clinical practice. By utilizing artificial intelligence (AI) and machine learning techniques, this study aims to develop a predictive model that can assist clinicians in identifying geriatric hip fracture patients at a higher risk of in-hospital mortality.

METHODS

A total of 52 707 geriatric hip fracture patients treated with surgery from 90 hospitals were included in this study. The primary outcome was postoperative in-hospital mortality. The patients were randomly divided into two groups, with a ratio of 7:3. The majority of patients, assigned to the training cohort, were used to develop the AI models. The remaining patients, assigned to the validation cohort, were used to validate the models. Various machine learning algorithms, including logistic regression (LR), decision tree (DT), naïve bayesian (NB), neural network (NN), eXGBoosting machine (eXGBM), and random forest (RF), were employed for model development. A comprehensive scoring system, incorporating 10 evaluation metrics, was developed to assess the prediction performance, with higher scores indicating superior predictive capability. Based on the best machine learning-based model, an AI application was developed on the Internet. In addition, a comparative testing of prediction performance between doctors and the AI application.

FINDINGS

The eXGBM model exhibited the best prediction performance, with an area under the curve (AUC) of 0.908 (95% CI: 0.881-0.932), as well as the highest accuracy (0.820), precision (0.817), specificity (0.814), and F1 score (0.822), and the lowest Brier score (0.120) and log loss (0.374). Additionally, the model showed favorable calibration, with a slope of 0.999 and an intercept of 0.028. According to the scoring system incorporating 10 evaluation metrics, the eXGBM model achieved the highest score (56), followed by the RF model (48) and NN model (41). The LR, DT, and NB models had total scores of 27, 30, and 13, respectively. The AI application has been deployed online at https://in-hospitaldeathinhipfracture-l9vhqo3l55fy8dkdvuskvu.streamlit.app/ , based on the eXGBM model. The comparative testing revealed that the AI application's predictive capabilities significantly outperformed those of the doctors in terms of AUC values (0.908 vs. 0.682, P <0.001).

CONCLUSIONS

The eXGBM model demonstrates promising predictive performance in assessing the risk of postoperative in-hospital mortality among geriatric hip fracture patients. The developed AI model serves as a valuable tool to enhance clinical decision-making.

摘要

背景

髋部骨折患者的院内死亡率是一个值得关注的问题,准确预测该结局对于适当的临床管理至关重要。然而,目前临床实践中缺乏有效的预测工具。本研究旨在利用人工智能(AI)和机器学习技术,开发一种预测模型,以帮助临床医生识别具有更高院内死亡风险的老年髋部骨折患者。

方法

本研究纳入了 90 家医院接受手术治疗的 52707 例老年髋部骨折患者。主要结局为术后院内死亡率。患者被随机分为两组,比例为 7:3。大多数患者(纳入训练队列)用于开发 AI 模型。其余患者(纳入验证队列)用于验证模型。采用包括逻辑回归(LR)、决策树(DT)、朴素贝叶斯(NB)、神经网络(NN)、极端梯度提升机(eXGBM)和随机森林(RF)在内的多种机器学习算法来开发模型。开发了一个综合评分系统,纳入了 10 个评估指标,以评估预测性能,分数越高表示预测能力越强。基于最佳的基于机器学习的模型,在互联网上开发了一个 AI 应用程序。此外,还比较了医生和 AI 应用程序的预测性能。

结果

eXGBM 模型表现出最佳的预测性能,曲线下面积(AUC)为 0.908(95%CI:0.881-0.932),准确率(0.820)、精密度(0.817)、特异性(0.814)和 F1 评分(0.822)最高,Brier 评分(0.120)和对数损失(0.374)最低。此外,该模型具有良好的校准性能,斜率为 0.999,截距为 0.028。根据纳入 10 个评估指标的评分系统,eXGBM 模型的得分最高(56 分),其次是 RF 模型(48 分)和 NN 模型(41 分)。LR、DT 和 NB 模型的总分为 27、30 和 13。AI 应用程序已基于 eXGBM 模型部署在在线网站上,网址为 https://in-hospitaldeathinhipfracture-l9vhqo3l55fy8dkdvuskvu.streamlit.app/。比较性测试表明,与医生相比,AI 应用程序的预测能力在 AUC 值方面显著提高(0.908 比 0.682,P<0.001)。

结论

eXGBM 模型在评估老年髋部骨折患者术后院内死亡风险方面具有良好的预测性能。开发的 AI 模型是增强临床决策的有价值工具。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3832/11325965/296fffc345f9/js9-110-4876-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索